Abstract:
Techniques are disclosed for reading operating parameters from programmable elements on memory devices to configure a memory system. More specifically, programmable elements, such as antifuses, located on a memory device are programmed during fabrication with measured operating parameters corresponding to the memory device. Operating parameters may include, for example, operating current values, or voltage and timing parameters. The memory device may be incorporated into a memory module that is incorporated into a system. Once the memory module is incorporated into a system, the programmable elements may be accessed such that the memory system can be configured to optimally operate in accordance with the operating parameters measured for each memory device in the system.
Abstract:
Memory modules and methods for fabricating and implementing memory modules wherein unique operating current values corresponding to specific memory devices on the memory modules are accessed from a database such that the operating current values may be implemented to improve system performance. Memory modules comprising a number of volatile memory devices may be fabricated. Operating current values corresponding to the specific memory devices on the memory module may be stored in a database and accessed during fabrication or during implementation of the memory modules in a system. System performance may be optimized by implementing the unique operating current values corresponding to the specific memory devices on the memory modules.
Abstract:
Apparatus for reducing the power consumed by a memory device selectively activates a power saving mode in which operation of a delay compensation circuit may be suspended during an active power down mode of operation.
Abstract:
Memory modules and methods for fabricating and implementing memory modules wherein unique operating current values corresponding to specific memory devices on the memory modules are accessed from a database such that the operating current values may be implemented to improve system performance. Memory modules comprising a number of volatile memory devices may be fabricated. Operating current values corresponding to the specific memory devices on the memory module may be stored in a database and accessed during fabrication or during implementation of the memory modules in a system. System performance may be optimized by implementing the unique operating current values corresponding to the specific memory devices on the memory modules.
Abstract:
Memory modules and methods for fabricating and implementing memory modules wherein unique operating current values corresponding to specific memory devices on the memory modules are accessed from a database such that the operating current values may be implemented to improve system performance. Memory modules comprising a number of volatile memory devices may be fabricated. Operating current values corresponding to the specific memory devices on the memory module may be stored in a database and accessed during fabrication or during implementation of the memory modules in a system. System performance may be optimized by implementing the unique operating current values corresponding to the specific memory devices on the memory modules.
Abstract:
The present invention provides a memory device having a mode register with a selectable bit which sets the memory device to operate with a selected one of a plurality of possible clock input signals, for example, a single clock input or differential clock input.
Abstract:
A memory module for an electronic device is disclosed which provides means for reducing the amount of power necessary to access a desired number of data bits. This provides a design of memory modules which requires fewer DRAMs to be turned on during a read or write cycle than present module designs, thereby using much less power.
Abstract:
A method for initially programming a synchronous dynamic random access memory (SDRAM) device to have a first control operating option in response to a first command and for reprogramming the SDRAM device to have a second control operating option in response to a second command.
Abstract:
A memory array for an electronic device comprises a design which requires fewer memory devices to be activated to access a plurality of data bits, thereby reducing the amount of power required to access the data bits. The design comprises the use of a plurality of memory devices, each of which has a plurality of arrays and data out lines.
Abstract:
A synchronous dynamic random access memory (SDRAM) is responsive to command signals and includes a first bank memory array and a second bank memory array. A command decoder/controller responds to command signals to initiate, in a first system clock cycle, an active command controlling an active operation on the first bank memory array and to initiate, in a second system clock cycle, a transfer read or write command controlling a read or write transfer operation for transferring data from or to the first bank memory array. The command controller responds to the active command to automatically initiate, in the second system clock cycle, a precharge command controlling a precharge operation on the second bank memory array.