Abstract:
A startup circuit for providing a startup voltage from a high voltage DC bus voltage to an application circuit including an integrated circuit package for at least a control circuit for driving at least one power switch of the application circuit; a dropping resistor in the integrated circuit package having a first terminal for coupling to the high voltage DC bus and for dropping the high voltage DC bus voltage to a reduced voltage level at a second terminal; and a low voltage regulator in the package coupled to the second terminal for providing a startup regulated low voltage DC output at a preset level for powering at least one part of the application circuit during startup of the application circuit. The application circuit may be, for example, a switching mode power supply.
Abstract:
An integrated circuit for feeding data acquisition circuits is provided. The integrated circuit including an inverter application having a half-bridge driver for driving high and low side switches connected in a half bridge, a data acquisition circuit formed in monolithic high voltage technology, and a Low Voltage Floating Supply (LVFS) circuit for providing voltage to the data acquisition circuit, the LVFS circuit being formed in a floating n-epi pocket biased with a voltage that is lower than a maximum value of a voltage present in the n-epi pocket.
Abstract:
An integrated circuit that includes a resistor module with improved linearity is disclosed. The resistor module includes a diffused resistor body of a first conductivity type; a first terminal and a second terminal, each making direct electrical contact with the diffused resistor body; a doped well of a second conductivity type substantially surrounding the diffused resistor body on all but one major surface of the diffused resistor body, the doped well having contact regions; a first amplifier connected to the first terminal and to one contact region of the doped well; and a second amplifier connected to the second terminal and to another contact region of the well, such that the first amplifier and the second amplifier are connected for power supply only to the first terminal and second terminal, respectively. The first and second amplifiers may be unity gain buffer amplifiers or inverting opamps.
Abstract:
A startup circuit for providing a startup voltage from a high voltage DC bus voltage to an application circuit comprising an integrated circuit package for at least a control circuit for driving at least one power switch of the application circuit; a dropping resistor in the integrated circuit package having a first terminal for coupling to the high voltage DC bus and for dropping the high voltage DC bus voltage to a reduced voltage level at a second terminal; further comprising a low voltage regulator in the package coupled to the second terminal for providing a startup regulated low voltage DC output at a preset level for powering at least one part of the application circuit during startup of the application circuit. The application circuit may be, for example, a switching mode power supply.
Abstract:
An integrated ground fault detection circuit in accordance with an embodiment of the present application includes a shunt resistor provided on a positive rail of a DC bus, a high voltage pocket including a sensory circuit connected to the shunt resistor and operable to detect a fault condition indicating a short circuit and a transmitter section operable to continuously transmit a fault condition signal indicating the fault condition and a low voltage pocket including a receiver operable to receive the fault condition signal from the sensory circuit and a logic unit, connected to the receiver, and operable to provide a fault output signal indicating the presence of a fault condition based on the fault condition signal.
Abstract:
A startup circuit for providing a startup voltage from a high voltage DC bus voltage to an application circuit, the startup circuit comprising an integrated circuit package for at least a control circuit for driving at least one power switch of the application circuit having a low voltage terminal; a dropping resistor in the integrated circuit package having a first terminal for coupling to the high voltage DC bus and a second terminal, the dropping resistor dropping the high voltage DC bus voltage to a reduced voltage and providing the reduced voltage at the second terminal; further comprising a low voltage regulator coupled to the second terminal for using the reduced voltage for enabling generation of a regulated startup low voltage DC output at a preset level at the low voltage terminal for powering at least one part of the application circuit during startup of the application circuit, wherein the high voltage DC bus voltage is the only voltage source provided externally to the integrated circuit package.
Abstract:
An integrated circuit that includes a resistor module with improved linearity is disclosed. The resistor module includes a diffused resistor body of a first conductivity type; a first terminal and a second terminal, each making direct electrical contact with the diffused resistor body; a doped well of a second conductivity type substantially surrounding the diffused resistor body on all but one major surface of the diffused resistor body, the doped well having contact regions; a first amplifier connected to the first terminal and to one contact region of the doped well; and a second amplifier connected to the second terminal and to another contact region of the well, such that the first amplifier and the second amplifier are connected for power supply only to the first terminal and second terminal, respectively. The first and second amplifiers may be unity gain buffer amplifiers or inverting opamps.
Abstract:
A ring oscillator for generating an output signal, comprising a plurality of serially connected main elements for selectively delaying a signal input thereto, each of the plurality of main elements having two circuit paths, a first path including at least one time-delay element for delaying a signal input thereto and a second circuit path bypassing the first circuit path; and a multiplexor (MUX) having a first input coupled to the first circuit path including the at least one time-delay element and a second input coupled to the second circuit path, the MUX selecting the first or second inputs of a plurality of inputs and outputting an output signal.
Abstract:
A circuit including a level shifting device such as a high voltage MOS device which is turned on to make an output transition, and feedback circuitry which responds to the transition to turn off the level shifting device. A circuit including two n-channel devices and two p-channel devices can sense when current greater than a threshold flows through both devices of one channel type to prevent false output transitions due to rapid changes in offset voltage, or both features can be provided. Level shifting devices can also be connected so none of the devices receives its acknowledge signal from the device to which it provides an acknowledge signal to avoid a standoff between two devices. For each device, the feedback circuitry can distinguish acknowledge signals so a device that stops transmitting in response to a signal that was not an acknowledge signal cam be restarted.
Abstract:
A high-side driver in a driver circuit for driving a half-bridge stage having high- and low-side power switching devices series connected at a switched node, the high-side driver driving the high-side power switching device. The high-side driver including first and second complementary switched MOSFET series connected at a high-side node, driving the high-side power switching device, one of the MOSFETs having a parasitic bipolar transistor formed between the substrate, an N+ epitaxial region connected to the high-side driver supply voltage and the switched node, with the parasitic transistor having a base electrode formed by the N+ epitaxial region, an emitter electrode formed by the substrate and a collector electrode formed by the switched node, such that if a transient voltage that is negative with respect to the substrate is present at the high-side driver supply voltage, the parasitic transistor will conduct a short circuit current between the switched node and the substrate; a first circuit for controlling the conduction of the first and second MOSFETs to switch the high-side switching device ON and OFF; a diffusion in the N+ epitaxial region in which a terminal connected to the switched node is provided by the diffusion forming the collector of the parasitic transistor; and a second circuit coupled to the diffusion for sensing the high-side driver supply voltage at the epitaxial region and providing a signal to the first circuit to prevent turn-ON of the high-side power switching device.