摘要:
In the laminated coil component, the grain diameter of the coil conductors is 10 μm to 22 μm after baking is completed. When the grain diameter of the coil conductors is set to be 10 μm or larger after baking is completed, surface roughness of the coil conductors can be reduced to such an extent that a satisfactory Q value can be obtained at a high frequency. In addition, when the grain diameter of the coil conductors is set to be 22 μm or smaller after baking is completed, metal of the coil conductors can be refrained from being rapidly melted down during baking. Accordingly, a high Q value can be obtained while a high quality is ensured.
摘要:
A laminated coil component includes an element assembly formed by laminating a plurality of insulation layers and a coil unit formed inside the element assembly by a plurality of coil conductors. The element assembly includes a coil unit arrangement layer which has the coil unit arranged therein, and at least a pair of shape retention layers which is provided to have the coil unit arrangement layer interposed therebetween to retain a shape of the coil unit arrangement layer. The shape retention layer is made from glass-ceramic containing SrO, and a softening point of the coil unit arrangement layer is lower than a softening point or a melting point of the shape retention layer.
摘要:
A laminated coil component includes an element assembly formed by laminating a plurality of insulation layers and a coil unit formed inside the element assembly by a plurality of coil conductors. The element assembly includes a coil unit arrangement layer which has the coil unit arranged therein, and at least a pair of shape retention layers which is provided to have the coil unit arrangement layer interposed therebetween to retain a shape of the coil unit arrangement layer. The shape retention layer is made from glass-ceramic containing SrO, and a softening point of the coil unit arrangement layer is lower than a softening point or a melting point of the shape retention layer.
摘要:
In the laminated coil component, the grain diameter of the coil conductors is 10 μm to 22 μm after baking is completed. When the grain diameter of the coil conductors is set to be 10 μm or larger after baking is completed, surface roughness of the coil conductors can be reduced to such an extent that a satisfactory Q value can be obtained at a high frequency. In addition, when the grain diameter of the coil conductors is set to be 22 μm or smaller after baking is completed, metal of the coil conductors can be refrained from being rapidly melted down during baking. Accordingly, a high Q value can be obtained while a high quality is ensured.
摘要:
A dielectric ceramic composition comprises as a main component, Cu oxide, Si oxide and one selected from the group consisting of Zn oxide alone and a combination of Mg oxide and Zn oxide, as a subcomponent, a glass component including B oxide and at least one selected from the group consisting of Si oxide, Ba oxide, Ca oxide, Sr oxide, Li oxide and Zn oxide, and having a glass softening point is 750° C. or less, wherein a content of said glass component is 1.5 to 15 wt % with respect to 100 wt % of said main component.According to the present invention, a dielectric ceramic composition can be provided which is available to be sintered at low temperature (for example, 950° C. or lower) while comparatively decreasing contents of a glass component, which shows good properties (specific permittivity, loss Q value and insulation resistance), and which is available to perform cofiring different materials.
摘要:
A dielectric ceramic composition comprises as a main component, Cu oxide, Si oxide and one selected from the group consisting of Zn oxide alone and a combination of Mg oxide and Zn oxide, as a subcomponent, a glass component including B oxide and at least one selected from the group consisting of Si oxide, Ba oxide, Ca oxide, Sr oxide, Li oxide and Zn oxide, and having a glass softening point is 750° C. or less, wherein a content of said glass component is 1.5 to 15 wt % with respect to 100 wt % of said main component. According to the present invention, a dielectric ceramic composition can be provided which is available to be sintered at low temperature (for example, 950° C. or lower) while comparatively decreasing contents of a glass component, which shows good properties (specific permittivity, loss Q value and insulation resistance), and which is available to perform cofiring different materials.