摘要:
Provided are methods, devices, and kits for the isolation and detection of one or more analytes of interest from a biological sample using microslit filter membranes. In various examples, the methods use capture particles and binding agents for specific recognition of one or more analytes of interest.
摘要:
Provided are methods using and making functionalized silicon membranes, such as, for example, functionalized silicon nanomembranes. The methods may combine one or more (e.g., two) surface modification processes (e.g., using a combination of aldehydes and silanes). Also described are fluidic devices containing functionalized membranes of the present disclosure and uses thereof. The fluidic devices of the present disclosure include one or more functionalized silicon membrane.
摘要:
Provided are nanoporous silicon nitride membranes and methods of making such membranes. The membranes can be part of a monolithic structure or free-standing. The membranes can be made by transfer of the nanoporous structure of a nanoporous silicon or silicon oxide film by, for example, reactive ion etching. The membranes can be used in, for example, filtration applications, hemodialysis applications, hemodialysis devices, laboratory separation devices, multi-well cell culture devices, electronic biosensors, optical biosensors, active pre-concentration filters for microfluidic devices.
摘要:
Provided is a free-standing silicon oxide film that is under tensile stress. Also, provided are methods of making a free-standing silicon oxide film that is under tensile stress. The methods use low-power PECVD deposition of silicon oxide. Methods of imaging one or more objects (e.g., cells) using a free-standing silicon oxide film that is under tensile stress is also provided.
摘要:
Provided are methods of preparing, detecting, and/or assaying an analyte of interest from a sample. The methods utilize functionalized silicon membranes, such as, for example, functionalized silicon nanomembranes. Samples that can be used in the methods may be biological samples, food samples, environmental samples, industrial samples, or a combination thereof. Also provided are kits to perform methods of the present disclosure.
摘要:
Provided are monolithic structures comprising one or more suspended, nanoporous membranes that are in contact with one or more fluidic cavities, methods of making same, and exemplary uses of same. The monolithic structures can be formed using a transmembrane etch. The monolithic structures can be used, as examples, as filters and filtration modules in microfluidic devices, dialysis devices, and concentration devices in laboratory, industrial, and medical processes.
摘要:
Provided are nanoporous silicon nitride membranes and methods of making such membranes. The membranes can be part of a monolithic structure or free-standing. The membranes can be made by transfer of the nanoporous structure of a nanoporous silicon or silicon oxide film by, for example, reactive ion etching. The membranes can be used in, for example, filtration applications, hemodialysis applications, hemodialysis devices, laboratory separation devices, multi-well cell culture devices, electronic biosensors, optical biosensors, active pre-concentration filters for microfluidic devices.
摘要:
Provided are methods, devices, and kits for the isolation and detection of one or more analytes of interest from a biological sample using microslit filter membranes. In various examples, the methods use capture particles and binding agents for specific recognition of one or more analytes of interest.
摘要:
Provided are methods, devices, and kits for the isolation of extracellular vesicles using silicon nanomembranes. A method for EV isolation includes the steps of collecting a biofluid sample, contacting the biofluid sample with a pre-filtration membrane, thereby forming a first filtrate and a first retentate, optionally, washing the first retentate of the pre-filtration membrane, contacting the first filtrate from the pre-filtration membrane with a capture membrane, thereby forming a second filtrate and a second retentate, optionally, washing the second retentate, and eluting the second retentate from the capture membrane or lysing the second retentate to recover the contents.
摘要:
Provided are methods, devices, and kits for the isolation and enumeration of one or more components of interest within a liquid sample using microslit filter membranes. This disclosure relates to the enumeration of components within a sample of interest, and more particularly, the capture of such components by efficient isolation using microslit filters with high permeation capacity and precision molecular cut-off characteristics.