Abstract:
The instant invention pertains to new processes which produce an energy source effectively, efficiently, and in a more environmentally friendly manner. The process comprises hydrolyzing a lignocellulosic feedstock to form lignocellulosic hydrolyzate and a hydrolyzate residue. The lignocellulosic hydrolyzate is treated to produce hydrogen. The hydrolyzate residue may be reacted with hydrogen in the presence of a catalyst to yield the energy source.
Abstract:
The instant invention pertains to new processes which produce an energy source effectively, efficiently, and in a more environmentally friendly manner. The process comprises hydrolyzing a lignocellulosic feedstock to form lignocellulosic hydrolyzate and a hydrolyzate residue. The lignocellulosic hydrolyzate is treated to produce hydrogen. The hydrolyzate residue may be reacted with hydrogen in the presence of a catalyst to yield the energy source.
Abstract:
The general object of this invention is to provide an improved process for sweetening and desulfurizing sulfur-containing crude oil streams. Heating the sulfur-containing crude oil stream to an elevated temperature for an extended period of time while stirring and bubbling an inert gas into the crude accelerates the removal of sulfur containing gases from the crude oil stream. Furthermore, the addition of a polyalkylamine to the stirred crude oil can also greatly assist in the expulsion of sulfur containing gases. After processing under these conditions, the hydrogen sulfide producing capacity of the crude oil is reduced significantly, thus making the crude safer for transportation and handling by reducing the health and environmental risks.
Abstract:
A fuel composition comprising a hydrocarbon in water colloidal dispersion including spherical hydrocarbon particles having a mean softening point exceeding about 95.degree. C., and a water soluble dispersion agent comprising a surfactant and stabilizer. The process for the production thereof is disclosed. These dispersions have a median particle size below about 4.5 microns and about 90% of the particles have a mean particle size diameter less than about 60 microns. These dispersions are storage stable, stable towards transportation, and can be pumped and passed through a burner apparatus without destabilizing.
Abstract:
A process for desulfurizing hydrocarbons such as gasoline and similar petroleum products to reduce the sulfur content to a range of from about 2 to 15 ppm sulfur without affecting the octane rating is described. The sulfur containing hydrocarbon is contacted at slightly elevated temperatures with an oxidizing/extracting solution of formic acid, a small amount of hydrogen peroxide, and no more than about 25 wt % water.
Abstract:
A process for converting scrap plastic material into a high quality transportation fuel. The plastic material is granulated and mixed with granulated solid carbonaceous fuel e.g. coal and liquid hydrocarbonaceous solvent e.g. waste motor oil to produce a plastic-containing sludge. The plastic-containing sludge is liquefied in a closed autoclave while in contact with hydrogen gas. A pumpable slurry from the autoclave is heated and fractionated in a fractionation zone to produce a hydrocarbonaceous distillate which may be used for transportation fuel. A bottoms stream from the fractionation zone comprising liquid hydrocarbonaceous material and inorganic material is reacted by partial oxidation to produce nontoxic slag and raw synthesis gas, fuel gas or reducing gas which may be purified in a gas purification zone.
Abstract:
A process for upgrading plastic material containing inorganic filler or reinforcement material for use as feedstock in a partial oxidation gas generator for the production of raw synthesis gas, fuel gas, or reducing gas. The plastic material is granulated and partially liquefied by heating in a closed autoclave at a temperature in the range of about 400.degree. F. to 495.degree. F. and a pressure in the range of about 150 psig to 750 psig while the plastic material is in contact with a pumpable hydrocarbonaceous liquid solvent. A pumpable slurry is thereby produced comprising solubilized plastic, unsolubilized plastic, hydrocarbonaceous liquid solvent, separated inorganic material and unseparated inorganic material. After removing the separated inorganic material, the remainder of the slurry is then reacted by partial oxidation to produce said raw synthesis gas, fuel gas or reducing gas.
Abstract:
A process for upgrading plastic material containing inorganic filler or reinforcement material for use as feedstock in partial oxidation gas generator for the production of raw synthesis gas, fuel gas, or reducing gas. The plastic material is granulated and mixed with water to produce the plastic sludge. The plastic sludge is preheated at a temperature in the range of about 350.degree. F. to 475.degree. F. in the absence of air in a closed system. The preheated plastic sludge is then hydrothermally treated at a temperature in the range of about 450.degree. F. to 650.degree. F. at a pressure in the range of about 100 to 1200 psig and above the vapor pressure of water at that temperature. The hydrothermally treated plastic sludge is cooled, degassed, and mixed with ground solid carbonaceous fuel, e.g., coal and water, to produce a pumpable aqueous slurry having a solids content in the range of about 40 to 60 wt. %. The pumpable aqueous slurry is then reacted by partial oxidation to produce said synthesis gas, fuel gas, or reducing gas. In one embodiment, a portion of coal is mixed with the plastic sludge prior to the aforesaid preheating and hydrothermal steps.
Abstract:
A process for disposing of sewage sludge comprising the steps of, (1) dewatering the sewage sludge to produce an aqueous slurry of sewage sludge having a solids content of about 10 to 50 wt. %; (2) heating and mildly shearing said dewatered sewage sludge at about 150.degree. F. to 210.degree. F. in the absence of air for 3 seconds to 60 minutes by a rotor/mixer at a speed of about 15 to 1000 r.p.m., thereby producing a pumpable slurry having a viscosity of less than about 2500 centipoise; (3) mixing at a temperature in the range of about ambient to 200.degree. F. the slurry of sewage sludge from (2) with a supplemental fuel to produce a pumpable slurry of sewage sludge and supplemental fuel having a solids content in the range of about 50 to 65 wt. % and a higher heating value in the range of about 6,000 to 18,000 BTU/LB; and (4) burning said pumpable slurry from (3) in a partial oxidation gasifier, furnace, boiler, or incinerator to produce an effluent gas stream. In a preferred embodiment, the effluent gas stream is cleaned and purified and non-contaminating ash and slag are separated. By this process, noxious sewage sludge may be disposed of without contaminating the environment.
Abstract:
A process for treating a hydrocarbon oil feed to reduce total acid number (TAN) and increase API gravity employs a catalyst which includes one or more metals of non-noble Group VIII of the periodic table (e.g., iron, cobalt and nickel), and at least one metal selected from Group VIB (e.g., chromium, tungsten and molybdenum) on a phosphorus treated carbon support, the phosphorus treated carbon support being comprised of phosphorus bound to the carbon surface predominantly as polyphosphate species characterized by peaks between -5 and -30 ppm in the solid-state magic angle spinning .sup.31 P nuclear magnetic resonance spectrum. The process includes blending the catalyst with the hydrocarbon oil feed to form a slurry which is then treated with hydrogen at moderate temperature and pressure in, for example, a tubular reactor. Deposit formation is minimized or avoided.