摘要:
A distributed digital cross-connect system (10) is provided. The system includes two or more network interface islands (12) that connect to the telecommunications network. The system (10) also includes one or more distributed services nodes (18). Each distributed services node (18) connects to two or more of the network interface islands (12). The network interface islands (12) can transmit data to each other through the distributed services node (18). An administration system (14) is also connected to each distributed services node (18) and each network interface island (12). The administration system (14) transmits matrix configuration and telecommunications channel routing data to the network interface islands (12) and the distributed services nodes (18).
摘要:
A timing system for distributing a timing signal includes a master timing system that receives a network timing reference. The master timing system generates a master timing signal from the network timing reference. A distributed services node timing system receives the master timing signal and embeds a timing signal into a data transmission frame. A network interface island receives the data transmission frame and retrieves the embedded timing signal therefrom.
摘要:
An integrated multiple cross-connect system (10) having remotely located components interconnected by integrated office links is provided. The system (10) includes a broadband matrix (20), at least one remotely located high speed line terminating equipment (30, 32) coupled to a telecommunications network, and an integrated office link (34, 36) interconnecting the broadband matrix (10) and high speed line terminating equipment (30, 32), the integrated office link (34, 36) carrying duplex transmission of an IOL-N signal of N multiplexed STS-1P optical signals at an OC-N rate, the STS-1P signal including data payload and overhead fields. Further included is a remotely located wideband matrix (22), a second integrated office link (40) interconnecting the broadband matrix (20) and the remotely located wideband matrix (22), and at least one remotely located low speed line terminating equipment (54) coupled to a telecommunications network, where the wideband matrix (22) and low speed line terminating equipment (54) are interconnected by a third integrated office link (59). Fault coverage information including a cross-connect channel identification code and a parity value are among the IOL overhead fields. The fault coverage information in the IOL overhead fields are monitored at selected points along a transmission path.
摘要:
An exemplary system comprises a cage, a carrier board and a motherboard. The cage is mounted to the carrier board. The carrier board is connected to and oriented approximately normal to the motherboard. The carrier board may include at least one first conductor disposed on a surface of the carrier board and the motherboard may includes a socket for receiving the at least one first conductor of the carrier board. A small form factor pluggable may be connected in the cage and thereby coupled to the motherboard, thus permitting orientation of optical SFP modules normal to the motherboard allowing increasing module density in the limited space available on shelf in a rack.
摘要:
An integrated multiple cross-connect system (10) having remotely located components interconnected by integrated office links is provided. The system (10) includes a broadband matrix (20), at least one remotely located high speed line terminating equipment (30, 32) coupled to a telecommunications network, and an integrated office link (34, 36) interconnecting the broadband matrix (10) and high speed line terminating equipment (30, 32), the integrated office link (34, 36) carrying duplex transmission of an IOL-N signal of N multiplexed STS-1P optical signals at an OC-N rate, the STS-1P signal including data payload and overhead fields. Further included is a remotely located wideband matrix (22), a second integrated office link (40) interconnecting the broadband matrix (20) and the remotely located wideband matrix (22), and at least one remotely located low speed line terminating equipment (54) coupled to a telecommunications network, where the wideband matrix (22) and low speed line terminating equipment (54) are interconnected by a third integrated office link (59). Fault coverage information including a cross-connect channel identification code and a parity value are among the IOL overhead fields. The fault coverage information in the IOL overhead fields are monitored at selected points along a transmission path.
摘要:
A timing system (100) for coordinating the components of a distributed digital cross-connect system (10) is provided. The timing system (100) includes a master timing system (102) that receives a network timing reference (98, 99) and generates a master timing signal. A distributed services node timing system (104, 106) is connected to the master timing system (102) and receives the master timing signal. The distributed services node timing system (104, 106) then embeds a timing signal in a data transmission frame (150). Two or more digital cross-connect timing systems (108) are connected to the distributed services node timing system (104, 106) and receive the data transmission frame (150). The digital cross-connect timing systems (108) retrieve the embedded timing signal from the data transmission frame (150).
摘要:
An integrated multi-rate cross-connect system (10) includes a broadband subsystem (14) for processing optical and electrical telecommunication network signals. A wideband subsystem (16) processes wideband level electrical telecommunication signals from the network, from the broadband subsystem (14), and from a narrowband subsystem (18). The narrowband subsystem (18) processes narrowband level electrical telecommunication signals from the network and the wideband subsystem (16). An administration subsystem (12) provides centralized control and synchronization to the broadband subsystem (14), the wideband subsystem (16), and the narrowband subsystem (18). The wideband subsystem (16) is coupled to the broadband subsystem (14) and the narrowband subsystem (18) by internal transmission links (30) to allow for remote distribution of each subsystem. Each subsystem operates within its own timing island synchronized to a reference timing signal to facilitate component distribution.
摘要:
A grooming device (18) includes an inbound crosspoint switch (30) that combines proprietary STS-1 signals from any of a plurality of optical terminators (16) into a grouped set of output signals for transmission to a broadband matrix subsystem through dedicated matrix interfaces (20). The inbound crosspoint switch (30) includes a crosspoint matrix (72) that receives each of the plurality of input signal lines at each output signal port and selects which input signal line is connected to which output signal port as determined by a microprocessor controller (78). Each output signal port has a register (90) for storing information as to which input signal line is to be connected to that port. A decoder (92) generates a control signal from the information stored in the register (90) to drive a multiplexer (94) for selection of the appropriate input signal line.
摘要:
An integrated multi-rate cross-connect system (10) includes a broadband subsystem (14) for processing optical and electrical telecommunication network signals. A wideband subsystem (16) processes wideband level electrical telecommunication signals from the network, from the broadband subsystem (14), and from a narrowband subsystem (18). The narrowband subsystem (18) processes narrowband level electrical telecommunication signals from the network and the wideband subsystem (16). An administration subsystem (12) provides centralized control and synchronization to the broadband subsystem (14), the wideband subsystem (16), and the narrowband subsystem (18). The wideband subsystem (16) is coupled to the broadband subsystem (14) and the narrowband subsystem (18) by internal transmission links (30) to allow for remote distribution of each subsystem. Each subsystem operates within its own timing island synchronized to a reference timing signal to facilitate component distribution.
摘要:
A distributed digital cross-connect system (10) is provided. The system includes two or more network interface islands (12) that connect to the telecommunications network. The system (10) also includes one or more distributed services nodes (18). Each distributed services node (18) connects to two or more of the network interface islands (12). The network interface islands (12) can transmit data to each other through the distributed services node (18). An administration system (14) is also connected to each distributed services node (18) and each network interface island (12). The administration system (14) transmits matrix configuration and telecommunications channel routing data to the network interface islands (12) and the distributed services nodes (18).