摘要:
A method of fabricating a semiconductor device and a semiconductor device are provided. The method includes method of fabricating a semiconductor device including providing a semiconductor substrate having a first semiconductor device region and a second semiconductor device region defined therein, forming a first gate structure in the first semiconductor device region, forming a second gate structure in the second semiconductor device region, forming a first trench adjacent to a first side of the first gate structure, forming a second trench adjacent to a first side of the second gate structure, and forming a first semiconductor pattern in the first trench and forming a second semiconductor pattern in the second trench, wherein the first and second trenches have different cross-sectional shapes from each other.
摘要:
A method of fabricating a semiconductor device and a semiconductor device are provided. The method includes method of fabricating a semiconductor device including providing a semiconductor substrate having a first semiconductor device region and a second semiconductor device region defined therein, forming a first gate structure in the first semiconductor device region, forming a second gate structure in the second semiconductor device region, forming a first trench adjacent to a first side of the first gate structure, forming a second trench adjacent to a first side of the second gate structure, and forming a first semiconductor pattern in the first trench and forming a second semiconductor pattern in the second trench, wherein the first and second trenches have different cross-sectional shapes from each other.
摘要:
A metal-based photonic device package module that is capable of greatly improving heat releasing efficiency and implementing a thin package is provided. The metal-based photonic device package module includes a metal substrate that is formed the shape of a plate, a metal oxide layer that is formed on the metal substrate to have a mounting cavity, a photonic device that is mounted in the mounting cavity of the metal oxide layer, and a reflecting plane that is formed at an inner surface of the mounting cavity of the metal oxide layer.
摘要:
Methods of forming a semiconductor cell array region, a method of forming a semiconductor device including the semiconductor cell array region, and a method of forming a semiconductor module including the semiconductor device are provided, the methods of forming the semiconductor cell array region include preparing a semiconductor plate. A semiconductor layer may be formed over the semiconductor plate. The semiconductor layer may be etched to form semiconductor pillars over the semiconductor plate.
摘要:
A metal-based photonic device package module that is capable of greatly improving heat releasing efficiency and implementing a thin package is provided. The metal-based photonic device package module includes a metal substrate that is formed the shape of a plate, a metal oxide layer that is formed on the metal substrate to have a mounting cavity, a photonic device that is mounted in the mounting cavity of the metal oxide layer, and a reflecting plane that is formed at an inner surface of the mounting cavity of the metal oxide layer.
摘要:
A method of fabricating a vertical NAND semiconductor device can include changing a phase of a first preliminary semiconductor layer in an opening from solid to liquid to form a first single crystalline semiconductor layer in the opening and then forming a second preliminary semiconductor layer on the first single crystalline semiconductor layer. The phase of the second preliminary semiconductor layer is changed from solid to liquid to form a second single crystalline semiconductor layer that combines with the first single crystalline semiconductor layers to form a single crystalline semiconductor layer in the opening.
摘要:
A method of fabricating a vertical NAND semiconductor device can include changing a phase of a first preliminary semiconductor layer in an opening from solid to liquid to form a first single crystalline semiconductor layer in the opening and then forming a second preliminary semiconductor layer on the first single crystalline semiconductor layer. The phase of the second preliminary semiconductor layer is changed from solid to liquid to form a second single crystalline semiconductor layer that combines with the first single crystalline semiconductor layers to form a single crystalline semiconductor layer in the opening.