MEMS Sensor for Measuring Z-Axis Angular Rate
    1.
    发明申请
    MEMS Sensor for Measuring Z-Axis Angular Rate 审中-公开
    用于测量Z轴角速率的MEMS传感器

    公开(公告)号:US20160265916A1

    公开(公告)日:2016-09-15

    申请号:US15031572

    申请日:2014-12-11

    CPC classification number: G01C19/5621 G01C19/5747

    Abstract: A micromechanical sensor for measuring z-axis angular rate includes a substrate defining a substrate plane and a z-axis perpendicular to the substrate plane. A first vibratory structure has a first shuttle-mass and a first proof-mass coupled to the first shuttle-mass by a first sense-mode spring. There is a second vibratory structure in a mirror-symmetrical setup (excepting the electrodes). First and second suspension structures suspend the first and second shuttle-masses above the substrate flexibly in drive-mode direction. Both shuttle-masses are suspended above the substrate for movement at least in drive-mode direction, wherein drive-mode direction and sense-mode direction are parallel to the substrate plane. Both vibratory structures are elastically coupled to each other. The device has separate structural elements for defining at least one of the following: (1) the anti-phase frequency and the in-phase/anti-phase frequency separation of the drive-mode, (2) the anti-phase frequency and the in-phase/anti-phase frequency separation of the sense-mode.

    Abstract translation: 用于测量z轴角速率的微机械传感器包括限定衬底平面和垂直于衬底平面的z轴的衬底。 第一振动结构具有通过第一感测模式弹簧耦合到第一穿梭体的第一穿梭质量和第一穿孔质量。 镜面对称设置中有第二个振动结构(电极除外)。 第一和第二悬架结构在驱动模式方向上柔性地悬挂在基板上方的第一和第二梭芯。 两个穿梭质量悬挂在衬底上方至少在驱动模式方向上移动,其中驱动模式方向和感测模式方向平行于衬底平面。 两个振动结构彼此弹性耦合。 该装置具有用于限定以下至少一个的单独的结构元件:(1)驱动模式的反相频率和同相/反相频率分离,(2)反相频率和 感应模式的同相/反相频率分离。

    MEMS-sensor
    2.
    发明授权

    公开(公告)号:US09856133B2

    公开(公告)日:2018-01-02

    申请号:US14891033

    申请日:2014-05-21

    Abstract: A sensor which measures parameters such as acceleration, rotation and magnetic field comprises a substrate defining a plane and at least one sensing plate suspended above the substrate for movement in a sensing direction orthogonal to the substrate plane. A detection arm suspended above the substrate is rotational about an axis parallel to the substrate plane. An out-of-plane coupling structure couples the sensing plate to the detection arm for generating rotational movement of the detection arm, which is detected by a rotation detection structure. A pivot element arranged at a distance from the coupling structure facilitates tilting movement of the sensing plate.

    MEMS-SENSOR
    3.
    发明申请
    MEMS-SENSOR 有权
    MEMS传感器

    公开(公告)号:US20160130133A1

    公开(公告)日:2016-05-12

    申请号:US14891033

    申请日:2014-05-21

    Abstract: A sensor for measuring physical parameters such as acceleration, rotation, magnetic field, comprises a substrate (13) defining a substrate plane and at least one sensing plate (11, 12) suspended above the substrate (13) for performing a movement having at least a first component in a sensing direction. The sensing direction is orthogonal to the substrate plane. There is at least one detection arm (14.1, 14.2) that is suspended above the substrate (13) for performing a rotational movement about a rotation axis parallel to the substrate plane. An out-of-plane coupling structure (17.1, 17.4) is used to couple the first component of the movement of said sensing plate (11, 12) to said detection arm (14.1, 14.2) for generating the rotational movement of the detection arm (14.1, 14.2). A rotation detection structure cooperates with the detection arm (14.1, 14.2) for detecting the rotational movement of the detection arm (14.1, 14.2) with respect to the substrate plane. A pivot element (17.2, 17.3) is arranged at a distance from the out-of-plane coupling structure (17.1, 17.4), said pivot element (17.2, 17.3) coupling the sensing plate to a geometric reference plane (19), which is at a fixed distance above the substrate plane, so that the sensing plate (11, 12) performs a tilting out-of-plane movement.

    Abstract translation: 用于测量诸如加速度,旋转,磁场的物理参数的传感器包括限定衬底平面的衬底(13)和悬挂在衬底(13)上方的至少一个感测板(11,12),用于执行至少具有 感测方向上的第一分量。 检测方向与基板平面正交。 至少有一个检测臂(14.1,14.2)悬挂在基板(13)上方,用于围绕平行于基板平面的旋转轴线进行旋转运动。 平面外耦合结构(17.1,17.4)用于将所述感测板(11,12)的运动的第一分量耦合到所述检测臂(14.1,14.2),以产生检测臂的旋转运动 (14.1,14.2)。 旋转检测结构与检测臂(14.1,14.2)配合,用于检测检测臂(14.1,14.2)相对于基板平面的旋转运动。 枢轴元件(17.2,17.3)被布置成离开平面外联接结构(17.1,17.4)一定距离,所述枢转元件(17.2,17.3)将感测板联接到几何参考平面(19),其中 在基板平面上方固定距离,使得感测板(11,12)执行倾斜的平面外运动。

    MICROMECHANICAL Z-AXIS GYROSCOPE
    4.
    发明申请
    MICROMECHANICAL Z-AXIS GYROSCOPE 审中-公开
    微观Z轴轴承

    公开(公告)号:US20150316378A1

    公开(公告)日:2015-11-05

    申请号:US14654154

    申请日:2013-12-09

    CPC classification number: G01C19/5747

    Abstract: A micromechanical sensor device for measuring angular z-axis motion comprises two vibratory structures each having at least one proof mass. A suspension structure maintains the two vibratory structures in a mobile suspended position above the substrate for movement parallel to the substrate plane in drive-mode (x-axis) direction and in sense-mode direction (y-axis). A coupling support structure connects the coupling structure to an anchor structure and enables a rotational swinging movement of the coupling structure, the rotational swinging movement having an axis of rotation that is perpendicular to the substrate plane. Each of the vibratory structures comprises at least one shuttle mass coupled to the at least one proof mass by sense-mode springs, which are more flexible in sense-mode direction than in drive-mode direction (x), for activating a vibration movement of each vibratory structure. A sensing electrode structure for each proof mass is designed for detecting sense-mode movements that are parallel to the substrate plane, The coupling support structure is designed to also enable a translational movement of the coupling structure in drive-mode direction (x).

    Abstract translation: 用于测量角度z轴运动的微机械传感器装置包括两个振动结构,每个具有至少一个检验质量。 悬挂结构将两个振动结构保持在基板上方的可移动悬挂位置,以在驱动模式(x轴)方向和感测模式方向(y轴)上平行于基板平面移动。 联接支撑结构将联接结构连接到锚固结构并且能够实现联接结构的旋转摆动运动,旋转摆动运动具有垂直于基板平面的旋转轴线。 每个振动结构包括通过感测模式弹簧耦合到至少一个检测质量块的至少一个穿梭质量,其在感测模式方向上比在驱动模式方向(x)上更灵活,用于激活振动运动 每个振动结构。 用于每个检验质量块的感测电极结构被设计用于检测平行于衬底平面的感测模式运动。耦合支撑结构被设计成还能够实现耦合结构在驱动模式方向(x)上的平移运动。

    MICRO-ELECTROMECHANICAL GYRO DEVICE
    5.
    发明申请
    MICRO-ELECTROMECHANICAL GYRO DEVICE 审中-公开
    微机电陀螺装置

    公开(公告)号:US20140224016A1

    公开(公告)日:2014-08-14

    申请号:US14345970

    申请日:2012-09-20

    Inventor: Jacques Leclerc

    CPC classification number: G01C19/5712

    Abstract: A resonator micro-electronic gyro, preferably a micro-electromechanical system (MEMS) gym comprises a first and a second resonator mass (1, 2) suspended for rotational vibration. The two masses (1, 2) are flexibly connected by four mechanical coupling elements (4, 5, 6, 7) for anti-phase vibration. There is at least one positive and at least one negative sensing electrode (S11+, S11−, S21+, S21−) on each resonator mass (1, 2) for detecting an out-of-plane output movement of the masses (1, 2). A detection circuit is connected to be said positive and negative sensing electrodes and determines the output signal by differential detection of the signals on the basis of the following formula: Sxout=({S21+}−M{S11+})−({S21−}−M{S11−}), wherein {S21+}, {S21−} sensing electrode signals of the positive and negative detection electrode of the second mass, respectively; {S11+}, {S11−} sensing electrode signals of the positive and negative detection electrode of the first mass, respectively, μ=compensation factor.

    Abstract translation: 谐振器微电子陀螺仪,优选微机电系统(MEMS)健身房包括悬挂用于旋转振动的第一和第二谐振器质量块(1,2)。 两个质量(1,2)通过四个用于反相振动的机械耦合元件(4,5,6,7)灵活连接。 在每个谐振器块(1,2)上存在至少一个正和至少一个负感测电极(S11 +,S11-,S21 +,S21-),用于检测质量(1,2)的平面外输出运动 )。 连接检测电路为所述正极和负极检测电极,并根据下列公式通过差分检测来确定输出信号:Sxout =({S21 +} -M {S11 +}) - ({S21-} -M {S11-}),其中分别为第二质量的正和负检测电极的{S21 +},{S21-}感测电极信号; {S11 +},{S11-}分别检测第一质量的正极和负极检测电极的电极信号,μ=补偿因子。

    MEMS DEVICE WITH GETTER LAYER
    6.
    发明申请
    MEMS DEVICE WITH GETTER LAYER 有权
    具有光栅层的MEMS器件

    公开(公告)号:US20160107882A1

    公开(公告)日:2016-04-21

    申请号:US14890852

    申请日:2014-06-05

    CPC classification number: B81B7/0038 B81C1/00285

    Abstract: A MEMS device comprises a first layer (1), a second layer (2) and a third layer (3) sealed together. A mobile structure (7.1, 7.2) in the second layer (2) is defined by openings (8.1, 8.2) in the second layer (2). In the first layer (1), there is at least one first-layer cavity (6.1, 6.2) with an opening towards the mobile structure (7.1, 7.2) of the second layer (2). In the third layer (3), there is at least one third-layer cavity (9) with an opening towards the mobile structure (7.1, 7.2) of the second layer (2). Therefore, the third-layer cavity (9) and the second layer (2) define a space within the MEMS device, A getter layer (10.1, 10.2) arranged on a surface of said space. The getter layer (10.1, 10.2) is preferably arranged on a surface of the second layer (2) and in particular, the getter layer (10.1, 10.2) is arranged on a static part of the second layer (2). Alternatively, the MEMS device has a third-layer cavity (24) with at least two recesses (25.1, 25.2, 25.3) and the getter layer (26.1, 26.2, 26.3) is arranged on a surface of the recesses (25.1, 25.2, 25.3).

    Abstract translation: MEMS器件包括密封在一起的第一层(1),第二层(2)和第三层(3)。 第二层(2)中的移动结构(7.1,7.2)由第二层(2)中的开口(8.1,8.2)限定。 在第一层(1)中,存在至少一个具有朝向第二层(2)的移动结构(7.1,7.2)的开口的第一层空腔(6.1,6.2)。 在第三层(3)中,存在至少一个具有朝向第二层(2)的移动结构(7.1,7.2)的开口的第三层空腔(9)。 因此,第三层空腔(9)和第二层(2)在MEMS装置内限定了布置在所述空间表面上的吸气剂层(10.1,10.2)。 吸气剂层(10.1,10.2)优选地布置在第二层(2)的表面上,特别地,吸气剂层(10.1,10.2)布置在第二层(2)的静态部分上。 或者,MEMS器件具有具有至少两个凹部(25.1,25.2,25.3)的第三层腔(24),并且吸气剂层(26.1,26.2,26.3)布置在凹部(25.1,25.2,25.3)的表面上, 25.3)。

    MULTIAXIAL MICRO-ELECTRONIC INERTIAL SENSOR
    7.
    发明申请
    MULTIAXIAL MICRO-ELECTRONIC INERTIAL SENSOR 审中-公开
    多相微电子惯性传感器

    公开(公告)号:US20140352431A1

    公开(公告)日:2014-12-04

    申请号:US14367670

    申请日:2012-12-20

    Inventor: Jacques Leclerc

    Abstract: A resonator micro-electronic inertial sensor, preferably a micro-electromechanical system (MEMS) sensor (e.g. a gyro), for detecting linear accelerations and rotation rates in more than one axis comprises: a proof-mass system (21.1, 21.4) flexibly suspended above a substrate for performing a rotational in-plane vibration about a central axis (24,) a drive electrode system (D1, . . . D4) for driving the proof-mass system (21.1, . . . 21.4) to perform said rotational in-plane vibration, and a sensing electrode system (S1, S8) connected to the proof-mass system (21.1, . . . 21.4) for detecting linear accelerations or rotation rates in more than one axis. Said proof-mass system (21.1 21.4) has more than two proof-mass elements flexibly coupled (25.1a, 25.1b) to each other. Each proof-mass element (21.1, 21.2) is directly and flexibly connected (23.1, 25.1a, 25.1b) to an anchor structure (22) on the substrate (32). The proof-mass elements (21.1, . . . 21.4) are preferably arranged In a ring-shaped configuration between an inner and an outer radius (R1, R2) with respect to the central axis (24).

    Abstract translation: 谐振器微电子惯性传感器,优选微机电系统(MEMS)传感器(例如,陀螺仪),用于检测多于一个轴线中的线性加速度和旋转速率包括:柔性悬挂的校验质量系统(21.1,21.4) 在用于驱动所述校验质量系统(21.1,...,21.4)的驱动电极系统(D1 ... D4)的中心轴线(24)上执行旋转平面内振动的基板上方,以执行所述转动 平面振动以及连接到校验质量系统(21.1,...,21.4)的检测电极系统(S1,S8),用于检测多于一个轴的线性加速度或旋转速度。 所述证明质量系统(21.1 21.4)具有两个彼此柔性耦合(25.1a,25.1b)的证明质量元件。 每个证明质量元件(21.1,21.2)直接和柔性地连接(23.1,25.1a,25.1b)到衬底(32)上的锚结构(22)。 证明质量元件(21.1,...,21.4)优选地以相对于中心轴线(24)的内半径(R 1,R 2)和外半径(R 1,R 2)之间的环形构造布置。

    MEMS device with getter layer
    8.
    发明授权

    公开(公告)号:US09884756B2

    公开(公告)日:2018-02-06

    申请号:US14890852

    申请日:2014-06-05

    CPC classification number: B81B7/0038 B81C1/00285

    Abstract: A MEMS device comprises a first layer (1), a second layer (2) and a third layer (3) sealed together. A mobile structure (7.1, 7.2) in the second layer (2) is defined by openings (8.1, 8.2) in the second layer (2). In the first layer (1), there is at least one first-layer cavity (6.1, 6.2) with an opening towards the mobile structure (7.1, 7.2) of the second layer (2). In the third layer (3), there is at least one third-layer cavity (9) with an opening towards the mobile structure (7.1, 7.2) of the second layer (2). Therefore, the third-layer cavity (9) and the second layer (2) define a space within the MEMS device, A getter layer (10.1, 10.2) arranged on a surface of said space. The getter layer (10.1, 10.2) is preferably arranged on a surface of the second layer (2) and in particular, the getter layer (10.1, 10.2) is arranged on a static part of the second layer (2). Alternatively, the MEMS device has a third-layer cavity (24) with at least two recesses (25.1, 25.2, 25.3) and the getter layer (26.1, 26.2, 26.3) is arranged on a surface of the recesses (25.1, 25.2, 25.3).

Patent Agency Ranking