摘要:
A multilayer ceramic electronic component includes a ceramic body including a plurality of ceramic layers, the ceramic body having a first main surface and a second main surface and a plurality of side surfaces that connect the first main surface to the second main surface, an internal conductor including nickel, the internal conductor being disposed in the ceramic body and having an exposed portion exposed at least one of the side surfaces, and an external terminal electrode disposed on at least one of the side surfaces of the ceramic body, the external terminal electrode being electrically connected to the internal conductor. The external terminal electrode includes a first conductive layer including a Sn—Cu—Ni intermetallic compound, the first conductive layer covering the exposed portion of the internal conductor at least one of the side surfaces of the ceramic body.
摘要:
In a ceramic electronic component, an electrically conductive resin layer is arranged to cover a thick film layer and to extend beyond the end of the thick film layer by at least about 100 μm and a plating layer is arranged to cover the electrically conductive resin layer except a region having a dimension of at least about 50 μm and extending along the end of the electrically conductive resin layer. Consequently, the concentration of the stress is reduced.
摘要:
A ceramic electronic component includes a ceramic body; terminal electrodes formed on the ceramic body; and lead terminals joined to the terminal electrodes with solder containing Sn. Each terminal electrode includes a first electrode layer formed on the ceramic body and a second electrode layer formed on the first electrode layer. The second electrode layer contains a conductive constituent containing at least Zn, Ag and/or Cu, and Sn. The Zn content in the second electrode layer is about 4% by weight or more in relation to 100% by weight of the conductive constituent and is within the solubility limit not forming AgZn and/or CuZn intermetallic compounds.
摘要:
A method is used to manufacture a multilayer electronic component including a multilayer composite including internal electrodes having ends that are exposed at a predetermined surface of the multilayer composite. In the method, the exposed ends of the internal electrodes are coated with a metal film primarily composed of at least one metal selected from the group consisting of Pd, Au, Pt and Ag and having a thickness of at least about 0.1 μm by immersing the multilayer composite in a liquid containing a metal ion or a metal complex. Then, a continuous plating layer is formed by depositing a plating metal on the ends of the internal electrodes exposed at the predetermined surface of the multilayer composite, and subsequently growing the deposits of the plating metal so as to be connected to each other. Thus, exposed ends of the internal electrodes are electrically connected to each other.
摘要:
In a laminate type ceramic electronic component, when an external electrode for a laminated ceramic capacitor is formed directly by plating onto a surface of a component main body, the film that is directly plated may have a low fixing strength with respect to the component main body. As the external electrode, a first plating layer composed of a Ni—P plating film with a P content rate of about 9 weight % or more is first formed such that a plating deposition deposited with the exposed ends of respective internal electrodes as starting points is grown on at least an end surface of a component main body. Then, a second plating layer composed of a Ni plating film containing substantially no P is formed on the first plating layer. Preferably, the first plating layer is formed by electroless plating, whereas the second plating layer is formed by electrolytic plating.
摘要:
In a laminate type ceramic electronic component, when an external electrode for a laminated ceramic capacitor is formed directly by plating onto a surface of a component main body, the film that is directly plated may have a low fixing strength with respect to the component main body. As the external electrode, a first plating layer composed of a Ni—P plating film with a P content rate of about 9 weight % or more is first formed such that a plating deposition deposited with the exposed ends of respective internal electrodes as starting points is grown on at least an end surface of a component main body. Then, a second plating layer composed of a Ni plating film containing substantially no P is formed on the first plating layer. Preferably, the first plating layer is formed by electroless plating, whereas the second plating layer is formed by electrolytic plating.
摘要:
A multilayer ceramic electronic component includes a ceramic body including a plurality of ceramic layers, the ceramic body having a first main surface and a second main surface and a plurality of side surfaces that connect the first main surface to the second main surface, an internal conductor including nickel, the internal conductor being disposed in the ceramic body and having an exposed portion exposed at least one of the side surfaces, and an external terminal electrode disposed on at least one of the side surfaces of the ceramic body, the external terminal electrode being electrically connected to the internal conductor. The external terminal electrode includes a first conductive layer including a Sn—Cu—Ni intermetallic compound, the first conductive layer covering the exposed portion of the internal conductor at least one of the side surfaces of the ceramic body.
摘要:
In a ceramic electronic component, an electrically conductive resin layer is arranged to cover a thick film layer and to extend beyond the end of the thick film layer by at least about 100 μm and a plating layer is arranged to cover the electrically conductive resin layer except a region having a dimension of at least about 50 μm and extending along the end of the electrically conductive resin layer. Consequently, the concentration of the stress is reduced.
摘要:
In a laminate type ceramic electronic component, when an external electrode is formed directly by plating onto a surface of a component main body, the plating film that is to serve as the external electrode may have a low fixing strength with respect to the component main body. In order to prevent this problem, an external electrode includes a first plating layer composed of a Ni—B plating film and is first formed such that a plating deposition deposited with the exposed ends of respective internal electrodes as starting points is grown on at least an end surface of a component main body. Then, a second plating layer composed of a Ni plating film containing substantially no B is formed on the first plating layer. Preferably, the B content of the Ni—B plating film constituting the first plating layer is about 0.1 wt % to about 6 wt %.
摘要:
In a laminate type ceramic electronic component, when an external electrode is formed directly by plating onto a surface of a component main body, the plating film that is to serve as the external electrode may have a low fixing strength with respect to the component main body. In order to prevent this problem, an external electrode includes a first plating layer composed of a Ni—B plating film and is first formed such that a plating deposition deposited with the exposed ends of respective internal electrodes as starting points is grown on at least an end surface of a component main body. Then, a second plating layer composed of a Ni plating film containing substantially no B is formed on the first plating layer. Preferably, the B content of the Ni—B plating film constituting the first plating layer is about 0.1 wt % to about 6 wt %.