Graphene growth on a non-hexagonal lattice
    2.
    发明授权
    Graphene growth on a non-hexagonal lattice 有权
    非六方晶格上的石墨烯生长

    公开(公告)号:US08877340B2

    公开(公告)日:2014-11-04

    申请号:US12844029

    申请日:2010-07-27

    IPC分类号: B32B9/00

    摘要: A graphene layer is formed on a crystallographic surface having a non-hexagonal symmetry. The crystallographic surface can be a surface of a single crystalline semiconductor carbide layer. The non-hexagonal symmetry surface of the single crystalline semiconductor carbide layer is annealed at an elevated temperature in ultra-high vacuum environment to form the graphene layer. During the anneal, the semiconductor atoms on the non-hexagonal surface of the single crystalline semiconductor carbide layer are evaporated selective to the carbon atoms. As the semiconductor atoms are selectively removed, the carbon concentration on the surface of the semiconductor-carbon alloy layer increases. Despite the non-hexagonal symmetry of the surface of the semiconductor-carbon alloy layer, the remaining carbon atoms can coalesce to form a graphene layer having hexagonal symmetry.

    摘要翻译: 在具有非六边形对称性的结晶表面上形成石墨烯层。 晶体表面可以是单晶半导体碳化物层的表面。 单晶半导体碳化物层的非六边形对称表面在超高真空环境中在升高的温度下退火以形成石墨烯层。 在退火过程中,单晶半导体碳化物层的非六边形表面上的半导体原子对碳原子有选择性的蒸发。 随着半导体原子被选择性地去除,半导体 - 碳合金层表面上的碳浓度增加。 尽管半导体 - 碳合金层的表面具有非六边形对称性,但剩余的碳原子可以聚结形成具有六边形对称性的石墨烯层。

    GRAPHENE GROWTH ON A NON-HEXAGONAL LATTICE
    6.
    发明申请
    GRAPHENE GROWTH ON A NON-HEXAGONAL LATTICE 审中-公开
    非黑龙江地区的石墨生长

    公开(公告)号:US20120319078A1

    公开(公告)日:2012-12-20

    申请号:US13596152

    申请日:2012-08-28

    IPC分类号: H01L29/06 B82Y99/00

    摘要: A graphene layer is formed on a crystallographic surface having a non-hexagonal symmetry. The crystallographic surface can be a surface of a single crystalline semiconductor carbide layer. The non-hexagonal symmetry surface of the single crystalline semiconductor carbide layer is annealed at an elevated temperature in ultra-high vacuum environment to form the graphene layer. During the anneal, the semiconductor atoms on the non-hexagonal surface of the single crystalline semiconductor carbide layer are evaporated selective to the carbon atoms. As the semiconductor atoms are selectively removed, the carbon concentration on the surface of the semiconductor-carbon alloy layer increases. Despite the non-hexagonal symmetry of the surface of the semiconductor-carbon alloy layer, the remaining carbon atoms can coalesce to form a graphene layer having hexagonal symmetry.

    摘要翻译: 在具有非六边形对称性的结晶表面上形成石墨烯层。 晶体表面可以是单晶半导体碳化物层的表面。 单晶半导体碳化物层的非六边形对称表面在超高真空环境中在升高的温度下退火以形成石墨烯层。 在退火过程中,单晶半导体碳化物层的非六边形表面上的半导体原子对碳原子有选择性的蒸发。 随着半导体原子被选择性地去除,半导体 - 碳合金层表面上的碳浓度增加。 尽管半导体 - 碳合金层的表面具有非六边形对称性,但剩余的碳原子可以聚结形成具有六边形对称性的石墨烯层。

    Formation of a graphene layer on a large substrate
    8.
    发明授权
    Formation of a graphene layer on a large substrate 有权
    在大基体上形成石墨烯层

    公开(公告)号:US08541769B2

    公开(公告)日:2013-09-24

    申请号:US12942490

    申请日:2010-11-09

    IPC分类号: H01L29/12

    摘要: A single crystalline silicon carbide layer can be grown on a single crystalline sapphire substrate. Subsequently, a graphene layer can be formed by conversion of a surface layer of the single crystalline silicon layer during an anneal at an elevated temperature in an ultrahigh vacuum environment. Alternately, a graphene layer can be deposited on an exposed surface of the single crystalline silicon carbide layer. A graphene layer can also be formed directly on a surface of a sapphire substrate or directly on a surface of a silicon carbide substrate. Still alternately, a graphene layer can be formed on a silicon carbide layer on a semiconductor substrate. The commercial availability of sapphire substrates and semiconductor substrates with a diameter of six inches or more allows formation of a graphene layer on a commercially scalable substrate for low cost manufacturing of devices employing a graphene layer.

    摘要翻译: 单晶碳化硅层可以在单晶蓝宝石衬底上生长。 随后,在超高真空环境中的高温退火期间,可以通过转换单晶硅层的表面层来形成石墨烯层。 或者,石墨烯层可以沉积在单晶碳化硅层的暴露表面上。 石墨烯层也可以直接形成在蓝宝石衬底的表面上或直接在碳化硅衬底的表面上形成。 另外,也可以在半导体基板上的碳化​​硅层上形成石墨烯层。 直径为6英寸或更大的蓝宝石衬底和半导体衬底的商业可用性允许在商业可扩展的衬底上形成石墨烯层,用于使用石墨烯层的器件的低成本制造。