Abstract:
Methods of manufacturing a direct current (DC) uninterruptible power supply (UPS) configured as an intrinsic power transfer switch are provided. One method includes providing multiple inputs, multiple rectifiers coupled to the inputs, a common node coupled to the rectifiers, and at least one DC output coupled to the common node. The DC output(s) is/are adapted for connection to at least one electrical load and a first input is adapted for connection to a first electrical service. A second input is adapted for connection to a second electrical service, the DC UPS continuing to supply power to the at least one electrical load in the event of a loss of either the first or second electrical services. Also provided are methods of manufacturing an intrinsic power transfer switch for a high-power electrical load requiring at least two electrical service inputs.
Abstract:
A circuit for dynamically increasing the drop-out voltage of an electromechanical automatic transfer switch (ATS) into a brownout voltage range is provided. The automatic transfer switch includes a first input, a first coil connected to the first input, and a first, normally-open auxiliary contact in magnetic communication with the first coil. The circuit includes a first resistor adapted to connect to the first, normally-open auxiliary contact, and a first transformer having a primary winding connected to the first resistor, and a secondary winding adapted to connect to the first coil. An operating voltage across the first coil is reduced a proportional amount by a secondary voltage across the secondary winding when the first, normally-open auxiliary contact is closed.
Abstract:
A direct current (DC) uninterruptible power supply (UPS) configured as an intrinsic power transfer switch is provided. The DC UPS includes first and second inputs. First and second rectifiers are coupled to the first and second inputs. A common node is coupled to the first and second rectifiers. At least one DC output is coupled to the common node. The at least one DC output is adapted for connection to at least one electrical load. The first input is adapted for connection to a first electrical service, and the second input is adapted for connection to a second electrical service. The DC UPS continues to supply power to the at least one electrical load in the event of a loss of either the first or second electrical services.
Abstract:
A multi-coil automatic transfer switch (ATS) adapted for automatically switching an appropriately rated component to render the ATS operational over a worldwide voltage range is provided. A low voltage contactor includes a low voltage coil magnetically linked with a normally open low voltage main contact. A high voltage contactor is coupled in parallel with the low voltage contactor. The high voltage contactor includes a high voltage coil magnetically linked with a normally open high voltage main contact. A normally closed high voltage auxiliary contact is magnetically linked with the high voltage coil. The normally closed high voltage auxiliary contact has a phase opposite the normally open high voltage main contact. The high voltage contactor opens the normally closed high voltage auxiliary contact to disconnect the low voltage coil.
Abstract:
This disclosure is directed to a compact storage device, such as a flash memory device. The connector of the memory device contains the controller that controls data transfer and storage within a flash memory module (FMM) of the memory device. Preferably, the controller resides completely within the connector to enable the smallest form factor of the flash memory device and the most space for one or more flash memory modules. In this manner, the memory device may store a large quantity of data while being of a small size. Additionally, the connector may also be used with other data transfer or storage devices while the FMM may separately store data within other storage or computing devices.
Abstract:
An apparatus for limiting volatile computer memory based on available energy in an auxiliary power source comprises an energy monitor module configured to determine an amount of available energy in the auxiliary power source. Also provided is a memory status module configured to determine an amount of volatile computer memory allocated for use in a computer and a memory adjustment module configured to adjust the amount of volatile computer memory allocated for use in the computer based on the amount of available energy in the auxiliary power source. A startup module may be configured to allow the computer to begin moving data normally when the memory adjustment module limits volatile computer memory allocated for use by the computer to a minimum level and the energy monitor module determines that the amount of available energy in the auxiliary power source has reached a minimum level capable of transferring the volatile computer memory allocated for use by the computer to non-volatile computer memory during a computer shutdown.
Abstract:
Exemplary embodiments adapted to distribute power from four input lines to a plurality of power supply units (PSUs) configured in an N+1 architecture are provided. In one such embodiment, a plurality of rectifier devices have first and second ends, each of the plurality of rectifier devices connected at the first end to one of the four input lines, and adapted to be bypassed by a first relay in a first operating mode and provide rectified input current in a second operating mode. A plurality of second relays is connected between each of the second ends of the plurality of rectifier devices. The plurality of second relays are adapted to be closed in the second operating mode to sum the rectified input current from each of the plurality of rectifier devices in a single node connecting each of the plurality of PSUs.
Abstract:
Method and apparatus for transmitting a first data set from a tool to a receiver are provided. The method includes: obtaining a first plurality of measurements using the tool to form a first dataset; saving data from the first plurality of measurements that form the first dataset in non-volatile memory; transmitting first data-groups derived from the first dataset to the receiver, each of the first data-groups comprising different measurements of the formation; and storing in the non-volatile memory a storage position of a last transmitted first data-group. Upon restoration of a loss of communications that prevents transmission of all the first data-groups, determining the storage position of the last transmitted first data-group; and continuing the transmission of the first data-groups from the storage position of the first data-group last transmitted before the loss of communications.
Abstract:
A dual line active automatic transfer switch (ATS) is provided. A first switch structure is connected to a first PSU of the plurality of PSUs, and operable between a first position connecting a first input line of the dual line and a second position connecting a second input line of the dual line with the one PSU. A second switch structure is connected to at least one additional PSU of the plurality of PSUs, and operable between a third position connecting the first input line and a fourth position connecting the second input line with the at least one additional PSU. The first and second switch structures are operable between each of the first, second, third, and fourth positions to alternatively connect each of the plurality of PSUs to one of the first and second input lines and connect, when each of the dual lines is charged, both of the first and second input lines to at least one of the plurality of PSUs.
Abstract:
An intrinsically phase-balanced direct current (DC) uninterruptible power supply (UPS) is provided. The DC UPS includes first, second, and third alternating current (AC) phase inputs. First, second, and third rectifiers are coupled to the first, second, and third AC phase inputs. A common node is coupled to the first, second, and third rectifiers. At least one DC output is coupled to the common node. The at least one DC output is adapted for connection to at least one electrical load. A battery is coupled to the common node. A blocking diode is coupled between the battery and the common node.
Abstract translation:提供了一种本质上是相位平衡的直流(DC)不间断电源(UPS)。 DC UPS包括第一,第二和第三交流(AC)相位输入。 第一,第二和第三整流器耦合到第一,第二和第三AC相输入。 公共节点耦合到第一,第二和第三整流器。 至少一个DC输出耦合到公共节点。 所述至少一个DC输出适于连接至少一个电负载。 电池耦合到公共节点。 阻塞二极管耦合在电池和公共节点之间。