Abstract:
A server system is disclosed. The server system comprises a motherboard and a server power system. The server power system comprises a power transmission interface, a power supply, a battery backup unit (BBU) and a signal transmission interface. The power supply converts an AC power into a DC power and then outputs the DC power to the motherboard via the power transmission interface. The BBU provides parallel or redundant power to the motherboard via the power transmission interface. The BBU and the power supply have the same size. The signal transmission interface is electrically connected to the motherboard, the power supply and the BBU.
Abstract:
An apparatus for performing key control includes an integrated circuit (IC) arranged to detect a key press according to some input/output signals of a key matrix, where the input/output signals include first input/output signals corresponding to a first direction and second input/output signals corresponding to a second direction. In addition, the IC includes a plurality of first pins and a plurality of second pins, for transmitting the first and the second input/output signals, respectively. In particular, during the detection of the key press, the IC controls at least one first pin of the first pins to be in an output mode and controls the second pins to be in an input mode in a first time period, and controls at least one second pin of the second pins to be in an output mode and controls the first pins to be in an input mode in a second time period.
Abstract:
An electronic device including a first body, a rotating base and a transmission module is provided. The rotating base has a first ventilation opening. The rotating base is pivoted on the first body and suitable for rotating between a using position and a retracted position in relative to the first body. When the rotating base is located at the retracted position, the first ventilation opening is exposed from the first body. When the rotating base is located at the using position, the first ventilation opening is retracted in the first body. The transmission module is connected to the rotating base for outputting a mechanical force to actuate the rotating base.
Abstract:
A server system includes a rack, a power supply module, a switch, and a plurality of servers. The rack can be divided into a plurality of rack units. The rack units are parallel to each other and vertically arranged. The power supply module and the switch are disposed in close proximity to each other in at least one of the rack units. The power supply is adjacent to the rear side of the rack. The switch is adjacent to the front side of the rack. Each of the servers is disposed in one of the other rack units and electrically connected to the power supply module and the switch.
Abstract:
A rack server system including at least one server and a battery backup unit (BBU) is provided. A power supplier is coupled to the server for converting an input voltage into a first output voltage when the input voltage is normal and for providing the first output voltage to the server. The BBU is coupled to the server and the power supplier for detecting the first output voltage outputted from the power supplier and for providing a second output voltage to the server when the input voltage and/or the first output voltage are abnormal.
Abstract:
A rack server system and a control method thereof are provided. The rack server system establishes a communication link for communicating with a battery backup unit. The battery backup unit is connected to a power input port of the rack server system, and includes a number of battery modules connected with each other in parallel. The rack server system controls the battery backup unit to perform validity test on a first battery module during a first period and to perform validity test on a second battery module during a second period, wherein the first period and the second period are not overlapped with each other.
Abstract:
A keyboard module, including a base plate, a membrane circuit, keys and a frame set, is provided. The membrane circuit is disposed on the base plate and has touch portions. The keys are assembled to the base plate and correspond to the touch portions respectively. The frame set is assembled to the base plate and includes a first frame and a second frame. The first frame has a plurality of first ribs disposed in a staggered way. The second frame is connected to the first frame and located between the first frame and the base plate. The second frame has a plurality of second ribs disposed in a staggered way, wherein a width of a portion of the second ribs is smaller than a width of the corresponding first ribs, and the keys pass through the second frame and the first frame in sequence to protrude above the frame set.
Abstract:
A rack server system and a control method thereof are provided. The rack server system establishes a communication link for communicating with a battery backup unit. The battery backup unit is connected to a power input port of the rack server system, and includes a number of battery modules connected with each other in parallel. The rack server system controls the battery backup unit to perform validity test on a first battery module during a first period and to perform validity test on a second battery module during a second period, wherein the first period and the second period are not overlapped with each other.
Abstract:
A rack system for a server includes a number of server units, which includes first to the third sets of server units, voltage converter, first to third power supply circuits. The voltage converter receives and converters a three-phase alternating current (AC) power signal to provide first to third single-phase power signals. The first to the third sets of power supply circuits respectively provides first to third direct current (DC) power signals according to the first to the third single-phase power signals. The first set to the third set of server units is respectively powered by first to the third DC power signals or respectively powered by first part, second part, and third part of the first to the third DC power signals.
Abstract:
A rack server system and an operating method applicable thereto are provided. The rack server system includes a battery backup unit (BBU) and at least one server. The operating method includes: communicating the server and the BBU with each other; the BBU providing a status information and a previous self-discharging test information to the server for the server to judge a status of the BBU; and providing power from the BBU to the server and adjusting a loading of the server according to the status information of the BBU when an input power is interrupted.