Abstract:
The invention relates to a device for vertically lifting a load, preferably a crane, comprising a base, at least one jib extending out from the base, at least one cable which is guided from the base around the tip of the jib, at least one device for gripping or securing a load which is attached or can be attached to the end of the cable guided around the tip of the jib, wherein the cable is a synthetic cable.
Abstract:
A control loop, which is for regulating a process in a plant having a controlled system, comprises: at least one measuring device for recording observation values of the controlled system, at least one adjustment device for acting on the controlled system in response to the adjustment device being controlled by way of action values, and a regulator. The regulator is operative to provide the action values. The regulator being operative to provide the action values comprises the regulator being adapted for: predicting, by way of a process model and at least one probability distribution of the observation values, a set of distributions of probable future states of the system; evaluating the set of distributions of probable future states of the system using target values and/or distributions of the target values; and selecting at least one probability distribution of action values.
Abstract:
Material (G) is converted by a combustion process in a plant (1) while air (L) is supplied. The state of the system in the plant (1) is described by state variables (x, y) and is regulated at least by one control loop (3, 5, 7, 9). Groups of states (Z) are defined for at least one pair of correlated state variables (x, y), with the groups being comparable as regards changes (dx/dt, dy/dt) of the correlated state variables (x, y). Each group of comparable states (Z) is characterized, as regards their transition functions, by parameters (Kp, Tn, Tv) of a standard controller. In the event of changes in the state of the system in the plant (1), the closest groups of comparable states (Z) are selected, and their transition functions, characterized by the parameters (Kp, Tn, Tv), are used for the purposes of regulation the system.
Abstract:
In a method for monitoring a thermodynamic process in an installation, in which image material (5) of the process is produced and the image material (5) is subjected to image evaluation, an eigen value problem approach is used, at least in large part, for automatic image evaluation.
Abstract:
The present invention relates to processes for preparing carboxylic acid derivatives, comprising the reaction of at least one carboxylic acid and/or of a carboxylic acid derivative with at least one alcohol and/or an amine in the presence of a metal-containing catalyst, wherein, after the reaction has ended, the metal-containing catalyst is contacted with water and a superabsorbent, the contacting of the catalyst with the water leading to hydrolysis of the catalyst. The present invention further relates to the use of superabsorbents for removing a metal-containing catalyst from a mixture after hydrolysis of the catalyst.
Abstract:
A force transmitting assembly comprises a composite fiber tie rod having a force transmitting element on the end thereof. The force transmitting element has at least a portion having a cross-section that tapers in a direction pointing away from the tie rod end. The load bearing fiber layer of the tie rod extends over and is wound about the tapered portion of the force transmitting element, thereby establishing a positive connection between the tie rod and the force transmitting element. The invention further relates to a method of manufacturing a force transmitting assembly comprising a composite fiber tie rod and a force transmitting element on an end thereof.
Abstract:
Material (G) is converted by a combustion process in a plant (1) while air (L) is supplied. The state of the system in the plant (1) is described by state variables (x, y) and is regulated at least by one control loop (3, 5, 7, 9). Groups of states (Z) are defined for at least one pair of correlated state variables (x, y), with the groups being comparable as regards changes (dx/dt, dy/dt) of the correlated state variables (x, y). Each group of comparable states (Z) is characterized, as regards their transition functions, by parameters (Kp, Tn, Tv) of a standard controller. In the event of changes in the state of the system in the plant (1), the closest groups of comparable states (Z) are selected, and their transition functions, characterized by the parameters (Kp, Tn, Tv), are used for the purposes of regulation the system.
Abstract:
In a method for controlling a thermodynamic process, in particular a combustion process, in which the system status (st) is measured, compared with optimization targets (rj), and in which suitable setting actions (ai) are performed in the system for controlling it, a process model (PM) is determined that is independent of the optimization targets (rj) and which describes the effects of actions (at) on the system status (st), and in which a situational evaluation (SB) that is independent of the process model (PM) evaluates the system status (st) by means of quality functions (ut) with regard to the optimization targets (rj).
Abstract translation:在用于控制热力学过程的方法中,特别是在其中测量系统状态(s)的燃烧过程中,与优化目标相比较, 并且在用于控制它的系统中执行适当的设置动作(a i SUP>),确定独立于优化目标的处理模型(PM) >),并且其描述了对系统状态的影响(s sub>),并且其中独立于 过程模型(PM)通过关于优化目标的质量函数(u> t SUB>)来评估系统状态(s> t SUB> SUP>)。
Abstract:
A control system (1) for a complex process, particularly for controlling a combustion process in a power plant, a waste incinerator plant, or a cement plant, has a controlled system (14) and at least one controller (36), wherein the control system (1) is divided hierarchically into various levels (10, 20, 30, 40). The first level (10) represents the complex, real process to be controlled and is implemented by the controlled system (14). The second level (20) represents an interface to the process and is implemented by a process control system. The third level (30) represents the control of the process and is implemented by the at least one active controller (36). The fourth level (40) represents a superordinate overview and is implemented by a principal controller (44).
Abstract:
In a control loop for regulating a combustion process in a plant having a controlled system for converting material by way of the combustion, with at least one flame body being formed, the control loop having at least one observation device for imaging the flame body and further sensors to determine the state variables describing the state of the system in the plant, at least one regulator and/or a computer to evaluate the state variables and select suitable actions based on a process model, and adjustment devices for at least the supply of material and/or air that can be controlled by the actions, the process model provides specialized function approximators for various process dynamics, one of which function approximators is selected by a selector, and a regulator assigned to the selected function approximator is used to regulate the control loop.