摘要:
A method of fabricating ESD suppression device includes forming conductive pillars dispersed in a dielectric material. The gaps formed between each pillar in the device behave like spark gaps when a high voltage ESD pulse occurs. When the voltage of the pulse reaches the “trigger voltage” these gaps spark over, creating a very low resistance path. In normal operation, the leakage current and the capacitance is very low, due to the physical gaps between the conductive pillars. The proposed method for fabricating an ESD suppression device includes micromachining techniques to be on-chip with device ICs.
摘要:
A handheld device and methods of operation. The device includes a housing and a display. A device may include a MEMS inertial sensor disposed within the housing, wherein the MEMS inertial sensor is configured to sense a change in spatial orientation when the user reorients the handheld device. A system may include a processor disposed within the housing and coupled to the MEMS inertial sensor and to the display, wherein the processor is programmed to receive the change in spatial orientation of the handheld device, and wherein the processor is programmed output an indication of the change in spatial orientation on the display. A computer implemented method for a handheld computer system for determining spatial orientation is also disclosed.
摘要:
An integrated multi-axis mechanical device and integrated circuit system. The integrated system can include a silicon substrate layer, a CMOS device region, four or more mechanical devices, and a wafer level packaging (WLP) layer. The CMOS layer can form an interface region, on which any number of CMOS and mechanical devices can be configured. The mechanical devices can include MEMS devices configured for multiple axes or for at least a first direction. The CMOS layer can be deposited on the silicon substrate and can include any number of metal layers and can be provided on any type of design rule. The integrated MEMS devices can include, but not exclusively, any combination of the following types of sensors: magnetic, pressure, humidity, temperature, chemical, biological, or inertial. Furthermore, the overlying WLP layer can be configured to hermetically seal any number of these integrated devices.
摘要:
An apparatus for packaging MEMS and ICs can include a semiconductor substrate, one or more MEMS devices, an enclosure, and one or more bonding structures. The semiconductor substrate can be bonded to a portion of the surface region. The semiconductor substrate can include one or more integrated circuits. Also, the semiconductor substrate can have an upper surface region. The one or more MEMS devise can overlie an inner region of the upper surface region formed by the semiconductor substrate. The enclosure can house the one or more MEMS devices. The enclosure can overlie a first outer region of the upper surface region. Also, the enclosure can have an upper cover region. The one or more bonding structures can be provided within a second outer region of the supper surface region.
摘要:
The present invention is related shielding integrated devices using CMOS fabrication techniques to form an encapsulation with cavity. The integrated circuits are completed first using standard IC processes. A wafer-level hermetic encapsulation is applied to form a cavity above the sensitive portion of the circuits using IC-foundry compatible processes. The encapsulation and cavity provide a hermetic inert environment that shields the sensitive circuits from EM interference, noise, moisture, gas, and corrosion from the outside environment.
摘要:
The present invention relates to integrating an inertial mechanical device on top of a CMOS substrate monolithically using IC-foundry compatible processes. The CMOS substrate is completed first using standard IC processes. A thick silicon layer is added on top of the CMOS. A subsequent patterning step defines a mechanical structure for inertial sensing. Finally, the mechanical device is encapsulated by a thick insulating layer at the wafer level.Comparing to the incumbent bulk or surface micromachined MEMS inertial sensors, the vertically monolithically integrated inertial sensors have smaller chip size, lower parasitics, higher sensitivity, lower power, and lower cost.
摘要:
The present invention relates to integrating an inertial mechanical device on top of an IC substrate monolithically using IC-foundry compatible processes. The IC substrate is completed first using standard IC processes. A thick silicon layer is added on top of the IC substrate. A subsequent patterning step defines a mechanical structure for inertial sensing. Finally, the mechanical device is encapsulated by a thick insulating layer at the wafer level. Compared with the incumbent bulk or surface micromachined MEMS inertial sensors, vertically monolithically integrated inertial sensors provided by embodiments of the present invention have one or more of the following advantages: smaller chip size, lower parasitics, higher sensitivity, lower power, and lower cost.
摘要:
A computer implemented method for determining an intensity of user input to a computer system, performed by the computer system that is programmed to perform the method includes determining by a display, an indication of a finger position a user in response to a change in finger position relative to the computer system, wherein change in fin position is also associated with a magnitude of change, determining by a physical sensor of the computer system, the magnitude of change in response to the change in finger position, determining by the computer system, a user selection of a function to perform in response to the indication of the finger position, determining by the computer system, an input parameter associated with the function in response to the magnitude of change, and initiating performance by the computer system, of the function in response to the input parameter.
摘要:
This present invention relates generally to manufacturing objects. More particularly, the invention relates to a method and structure for fabricating an out-of-plane compliant micro actuator. The compliant actuator has large actuation range in both vertical and horizontal planes without physical contact to the substrate. Due to fringe field actuation, the compliant actuator has no pull-in phenomenon and requires low voltage by a ‘zipping’ movement compared to conventional parallel plate electrostatic actuators. The method and device can be applied to micro actuators as well as other devices, for example, micro-electromechanical sensors, detectors, fluidic, and optical systems.
摘要:
The present invention relates to a method and device for integrating solar cell on LCD panels for photovoltaic electricity generation for portable electronic devices. According to one embodiment of the present invention, the black matrix region on the color filter substrate in a LCD panel is replaced by a solar cell region. A lens array substrate is coupled between the light source layer and the TFT to focus the backlight to increase the solar cell layer area while maintaining high fill ratio of the LCD pixels. The solar cell material is selected from at least silicon, a single crystal silicon, poly-crystalline silicon, amorphous silicon, gallium arsenide, cadmium telluride, copper indium diselenide, organic/inorganic, or hybrid cells. The substrate material is selected from glass, metal, plastic or polymer.