摘要:
A polymer, and an organic solar cell including the polymer, include a repeating unit A represented by Chemical Formula 1, and a repeating unit B represented by Chemical Formula 2.
摘要:
A polymer, and an organic solar cell including the polymer, include a repeating unit A represented by Chemical Formula 1, and a repeating unit B represented by Chemical Formula 2.
摘要:
Disclosed is an electron-donating polymer including a repeating unit A including one repeating unit selected from a repeating unit represented by Chemical Formula 1, a repeating unit represented by Chemical Formula 2, and a combination thereof; and a repeating unit B represented by Chemical Formula 3.
摘要:
Disclosed herein is a catalyst slurry composition for an electrode of a fuel cell. The catalyst slurry composition includes 100 parts by weight of an active metal, about 5 to about 30 parts by weight of a binder polymer, and about 6 to about 70 parts by weight of silica. Use of the catalyst slurry composition can provide control of the volume of pores accordingly can improve the performance of a fuel cell.
摘要:
An electrolyte membrane includes a nanocomposite ion complex that is a reaction product of a nanocomposite with a basic polymer. The nanocomposite includes a polymer having a sulfonic acid group and an unmodified clay. Either the unmodified clay has a layered structure and is dispersed in the polymer having the sulfonic acid group, and the polymer is intercalated between layers of the clay or the unmodified clay has an exfoliated structure and the exfoliated layers of the unmodified clay are dispersed in the polymer. The electrolyte membrane shows high mechanical strength, high ionic conductivity, and excellent methanol crossover impeding properties even when the degree of sulfonation of the polymer having the sulfonic acid group is high. When a methanol aqueous solution is used as a fuel, the fuel cell including the electrolyte membrane has a low methanol crossover, and thus, has a high operational efficiency and a long lifetime.
摘要:
A polymer, and an organic solar cell including the polymer, include a repeating unit A represented by Chemical Formula 1, and a repeating unit B represented by Chemical Formula 2.
摘要:
A nanocomposite includes metal-carbon nanotubes and a sulfonated polysulfone. In the nanocomposite, the sulfonated polysulfone and the metal-carbon nanotubes have strong attraction therebetween due to π-π interactions or van der Waals interactions, and thus the nanocomposite has excellent ionic conductivity and mechanical properties. In addition, the nanocomposite includes a metal that can be used as a catalyst for an anode, and thus the reduction in power generation caused by methanol crossover can be minimized. Therefore, a nanocomposite electrolyte membrane prepared using the nanocomposite can minimize the reduction in power generation caused by the crossover of a polar organic fuel such as methanol. In a fuel cell employing the nanocomposite electrolyte membrane, when an aqueous methanol solution is used as a fuel, crossover of the methanol is more suppressed, and accordingly, the fuel cell has an improved operating efficiency and a longer lifetime.
摘要:
A sulfonated poly(arylene sulfone) contains an unsaturated bond. A cross-linked material may be formed from the sulfonated poly(arylene sulfone), and a clay nanocomposite may include the sulfonated poly(arylene sulfone) or the cross-linked material. A fuel cell includes the clay nanocomposite.
摘要:
A membrane electrode assembly (MEA) for a fuel cell, and a method of making the same, the MEA including: an electrolyte membrane; binder layers including a sulfonated polysulfone-clay nanocomposite, and a tackifier, disposed on opposing sides of the membrane; and electrodes including electrode catalytic layers, disposed on the binder layers.
摘要:
Provided are a polymer membrane that includes a porous polymer matrix and an acryl-based polymer infiltrated in pores of the porous polymer matrix, a method of preparing the same, and a fuel cell using the polymer membrane. The polymer membrane effectively decreases a crossover phenomenon of a fuel cell.