摘要:
The present invention discloses A graphene film electrical current spreading layer applied GaN-based LED in vertical. structure, comprising: a p-type metal electrode including a metal support substrate and a metal reflective mirror formed on the metal support substrate; a hole injecting layer formed on the metal reflective mirror of the p-type metal electrode; an electron blocking layer formed on the hole injecting layer; a lighting layer formed on the electron blocking layer; an electron limiting layer formed on the lighting layer; an electron injecting layer formed on the electron limiting layer; an electrical current spreading layer formed on the electron injecting layer; two n-type metal electrodes formed on the electrical spreading layer and covering a part of the electrical current spreading layer.
摘要:
Preferred embodiment stimuli-responsive low solubility copolymer hydrogel compositions of the invention include polymerized N-isopropylacrylamide and water insoluble monomer or oligomer repeating units. The repeating units are arranged within the polymer backbone of the copolymer hydrogel. In a preferred fabrication method, precursors of N-isopropylacrylamide and precursors of the water insoluble monomer of oligomer are solved in a liquid solvent to form a solution in a container. An initiator is added to the solution. Gas is bubbled through the solution, and the container is sealed. The solution is stirred while heating to a polymerization temperature and polymerization is permitted to complete to form the copolymer hydrogel composition.
摘要:
A filter cartridge endplate (12) is described herein that has an integrated flow structure. For example, the integrated flow structure has concentric flow portions disposed at a center of the endplate (12), where a separator (10) is built into the endplate (12) that separates fluid flow. The endplate (12) includes a plate with a major surface, a separator (10) that protrudes axially away from the major surface. The separator (10) includes a first flow portion (14) and a second flow portion (16), where the first flow portion (14) is disposed radially inward relative to the second flow portion (16). The first flow portion (14) includes a channel (22) and the second flow portion includes a channel (24). The respective channels (22,24) are configured to allow axial fluid flow relative to the plate, and configured to allow fluid flow that is localized toward the center of the plate (12).
摘要:
A filter cartridge endplate (12) is described herein that has an integrated flow structure. For example, the integrated flow structure has concentric flow portions disposed at a center of the endplate (12), where a separator (10) is built into the endplate (12) that separates fluid flow. The endplate (12) includes a plate with a major surface, a separator (10) that protrudes axially away from the major surface. The separator (10) includes a first flow portion (14) and a second flow portion (16), where the first flow portion (14) is disposed radially inward relative to the second flow portion (16). The first flow portion (14) includes a channel (22) and the second flow portion includes a channel (24). The respective channels (22,24) are configured to allow axial fluid flow relative to the plate, and configured to allow fluid flow that is localized toward the center of the plate (12).
摘要:
The invention provides a method of treating an adult subject having a hematological cancer, comprising administering to the subject selected dosage regimens comprising a plurality of immune effector cells expressing a CAR molecule.
摘要:
A device including a micro component having an external surface and a permeable nanofiber covering on at least a portion of the external surface of the micro component. A cooled micro component system further includes a droplet spray system for spraying liquid droplets onto the nanofiber covering to cool the micro component. In an example method for cooling a micro component, droplet spray is directed onto a nanofiber covering that covers at least a portion of the micro component. The directing is controlled to permit efficient spreading and evaporation of liquid permeating the nanofiber covering. In example embodiments nanofibers of the permeable nanofiber covering are metalized to provide a rougher surface (e.g., a nano-textured metal layer).