摘要:
The present invention discloses A graphene film electrical current spreading layer applied GaN-based LED in vertical. structure, comprising: a p-type metal electrode including a metal support substrate and a metal reflective mirror formed on the metal support substrate; a hole injecting layer formed on the metal reflective mirror of the p-type metal electrode; an electron blocking layer formed on the hole injecting layer; a lighting layer formed on the electron blocking layer; an electron limiting layer formed on the lighting layer; an electron injecting layer formed on the electron limiting layer; an electrical current spreading layer formed on the electron injecting layer; two n-type metal electrodes formed on the electrical spreading layer and covering a part of the electrical current spreading layer.
摘要:
A white LED of a blue and yellow light emitting (structure) layer stacked structure includes a sapphire substrate, or gallium nitride substrate, or silicon carbide substrate, or silicon substrate; a buffer layer formed on the substrate; an N type gallium nitride epitaxial layer formed on the buffer layer; an N doped AlaInbGa1-a-bN quarternary alloy formed on the N type gallium nitride epitaxial layer; a blue light emitting structure layer which contains one or more InxGa1-xN/AlaInbGa1-a-bN quantum well(s) formed on the N type AlaInbGa1-a-bN layer; a yellow light emitting structure layer which contains one or more InyGa1-yN/AlaInbGa1-a-bN quantum well(s) formed on the InxGa1-xN/AlaInbGa1-a-bN quantum well structure; or alternatively, a yellow light emitting structure layer which contains one or more InyGa1-yN/AlaInbGa1-a-bN quantum well(s) being formed on the N type AlaInbGa1-a-bN layer first, and then a blue light emitting structure layer which contains one or more InxGa1-xN/AlaInbGa1-a-bN quantum well(s) being formed on the InyGa1-yN/AlaInbGa1-a-bN quantum well(s) structure; a P type Al0.1Ga0.9N and a P type GaN cap layer formed on the top.
摘要:
The present disclosure relates to a light emitting diode packaging structure and the method of manufacturing the same. The light emitting diode packaging structure has an insulating substrate with through holes formed on each side of the upper surface thereof, the through hole being filled with conductive metal. Additionally, a n-type layer, an active layer, a p-type layer, an insulating layer and a p-type electrode are formed on the insulating substrate. The structure further may include a n-type electrode provided on a side of the upper surface of the n-type layer; a first back electrode provided at one side of the back surface of the insulating substrate; a second back electrode provided at the other side of back surface of the insulating substrate; and an optical element packaged on the base substrate.
摘要:
The present disclosure relates to a light emitting diode packaging structure and the method of manufacturing the same. The light emitting diode packaging structure comprises: an insulating substrate with through holes formed on each side of the upper surface thereof, the through hole being filling with conductive metal; a n-type layer formed on the insulating substrate with a hole, which is filled with conductive metal; an active layer provided on the n-type layer; a p-type layer formed on the active layer; an insulating layer configured on one side of the n-type layer, the active layer and the p-type layer and to cover part of the upper surface of the p-type layer; a p-type electrode configured to cover the insulating layer and part of the upper surface of the p-type layer; a n-type electrode provided on a side of the upper surface of the n-type layer and configured to connect with the conductive metal in the through hole in the insulating substrate; a first back electrode provided at one side of back surface of the insulating substrate, the first back electrode connecting with the p-type electrode through the conductive metal in the through hole in the insulating substrate; a second back electrode provided at the other side of back surface of the insulating substrate, the second back electrode connecting with the n-type electrode through the conductive metal in the through hole in the insulating substrate; an optical element packaged on the base substrate, thereby finishing a device.