Microwave heating for semiconductor nanostructure fabrication
    1.
    发明授权
    Microwave heating for semiconductor nanostructure fabrication 失效
    微波加热用于半导体纳米结构制造

    公开(公告)号:US07994027B2

    公开(公告)日:2011-08-09

    申请号:US12463942

    申请日:2009-05-11

    Abstract: The present invention grows nanostructures using a microwave heating-based sublimation-sandwich SiC polytype growth method comprising: creating a sandwich cell by placing a source wafer parallel to a substrate wafer, leaving a small gap between the source wafer and the substrate wafer; placing a microwave heating head around the sandwich cell to selectively heat the source wafer to a source wafer temperature and the substrate wafer to a substrate wafer temperature; creating a temperature gradient between the source wafer temperature and the substrate wafer temperature; sublimating Si- and C-containing species from the source wafer, producing Si- and C-containing vapor species; converting the Si- and C-containing vapor species into liquid metallic alloy nanodroplets by allowing the metalized substrate wafer to absorb the Si- and C-containing vapor species; and growing nanostructures on the substrate wafer once the alloy droplets reach a saturation point for SiC. The substrate wafer may be coated with a thin metallic film, metal nanoparticles, and/or a catalyst.

    Abstract translation: 本发明使用基于微波加热的升华夹心SiC多型生长方法生长纳米结构,其包括:通过将源晶片平行于衬底晶片制造夹层电池,在源晶片和衬底晶片之间留下小的间隙; 将微波加热头围绕夹层电池放置,以将源晶片选择性地加热到源晶片温度,并将衬底晶片选择性地加热到衬底晶片温度; 在源晶片温度和衬底晶片温度之间产生温度梯度; 从源晶片升华含Si和C的物质,产生含Si和C的蒸气物质; 通过允许金属化的基底晶片吸收含Si和C的蒸气物质,将含Si和C的蒸汽物质转化成液体金属合金纳米质子; 并且一旦合金液滴达到SiC的饱和点,就在衬底晶圆上生长纳米结构。 衬底晶片可以涂覆有薄金属膜,金属纳米颗粒和/或催化剂。

    Microwave Heating for Semiconductor Nanostructure Fabrication
    4.
    发明申请
    Microwave Heating for Semiconductor Nanostructure Fabrication 失效
    微波加热用于半导体纳米结构制造

    公开(公告)号:US20100068871A1

    公开(公告)日:2010-03-18

    申请号:US12463942

    申请日:2009-05-11

    Abstract: The present invention grows nanostructures using a microwave heating-based sublimation-sandwich SiC polytype growth method comprising: creating a sandwich cell by placing a source wafer parallel to a substrate wafer, leaving a small gap between the source wafer and the substrate wafer; placing a microwave heating head around the sandwich cell to selectively heat the source wafer to a source wafer temperature and the substrate wafer to a substrate wafer temperature; creating a temperature gradient between the source wafer temperature and the substrate wafer temperature; sublimating Si- and C-containing species from the source wafer, producing Si- and C-containing vapor species; converting the Si- and C-containing vapor species into liquid metallic alloy nanodroplets by allowing the metalized substrate wafer to absorb the Si- and C-containing vapor species; and growing nanostructures on the substrate wafer once the alloy droplets reach a saturation point for SiC. The substrate wafer may be coated with a thin metallic film, metal nanoparticles, and/or a catalyst.

    Abstract translation: 本发明使用基于微波加热的升华夹心SiC多型生长方法生长纳米结构,其包括:通过将源晶片平行于衬底晶片制造夹层电池,在源晶片和衬底晶片之间留下小的间隙; 将微波加热头围绕夹层电池放置,以将源晶片选择性地加热到源晶片温度,并将衬底晶片选择性地加热到衬底晶片温度; 在源晶片温度和衬底晶片温度之间产生温度梯度; 从源晶片升华含Si和C的物质,产生含Si和C的蒸气物质; 通过允许金属化的基底晶片吸收含Si和C的蒸气物质,将含Si和C的蒸汽物质转化成液体金属合金纳米质子; 并且一旦合金液滴达到SiC的饱和点,就在衬底晶圆上生长纳米结构。 衬底晶片可以涂覆有薄金属膜,金属纳米颗粒和/或催化剂。

    Method and apparatus for improved electrodeless lamp screen
    6.
    发明授权
    Method and apparatus for improved electrodeless lamp screen 有权
    无极灯荧光屏改良方法及装置

    公开(公告)号:US06465959B1

    公开(公告)日:2002-10-15

    申请号:US09380506

    申请日:1999-09-03

    Abstract: A screen (49) including mesh portions (47 and 48) for a discharge lamp (46) bears a protective coating which inhibits degradation of the screen under lamp operating conditions. The coating does not absorb microwave energy, is transparent or reflective to visible light, and is capable of protecting the screen for at least several thousand hours of operation without substantial oxidation or tarnishing of the screen. The coating remains on the screen at screen temperatures above about 300 degrees C, and the coating does not significantly crack as the screen heats and cools. The coating may include, for example, a solgel deposited single phase or two phase glass.

    Abstract translation: 包括用于放电灯(46)的网部(47和48)的屏幕(49)具有防止在灯操作条件下屏幕劣化的保护涂层。 涂层不吸收微波能量,透明或反射可见光,并且能够保护屏幕至少几千小时的操作,而不会对屏幕造成实质的氧化或变色。 屏幕温度高于约300摄氏度时,涂层保留在屏幕上,当屏幕加热并冷却时,涂层不会显着破裂。 涂层可以包括例如沉积的单相或两相玻璃的溶胶凝胶。

    Doped Gallium Nitride Annealing
    7.
    发明申请
    Doped Gallium Nitride Annealing 审中-公开
    掺杂氮化镓退火

    公开(公告)号:US20100147835A1

    公开(公告)日:2010-06-17

    申请号:US12463952

    申请日:2009-05-11

    Abstract: The present invention involves annealing methods for doped gallium nitride (GaN). In one embodiment, one method includes placing, within a heating unit, a silicon carbide (SiC) wafer as a susceptor in close proximity with a doped GaN epilayer, wherein the doped GaN epilayer is either a GaN layer grown on a substrate or a GaN layer that is free standing; and heating, at a heating rate of at least about 100° C./s, the wafer and the doped GaN epilayer to at least about 1200° C. In another embodiment, another method includes placing, within a heating unit, a doped GaN epilayer, wherein the doped GaN epilayer is either a GaN layer grown on a conducting substrate or a GaN layer that is free standing; and heating, at a heating rate of at least about 100° C./s, the doped GaN epilayer to at least about 1200° C.

    Abstract translation: 本发明涉及用于掺杂氮化镓(GaN)的退火方法。 在一个实施例中,一种方法包括在加热单元内放置碳化硅(SiC)晶片作为紧邻掺杂的GaN外延层的基座,其中所述掺杂的GaN外延层是在衬底或GaN上生长的GaN层 独立的层; 并且以至少约100℃/ s的加热速率将晶片和掺杂的GaN外延层加热至至少约1200℃。在另一个实施例中,另一种方法包括在加热单元内放置掺杂的GaN 外延层,其中所述掺杂GaN外延层是在导电衬底上生长的GaN层或独立存在的GaN层; 并以至少约100℃/ s的加热速率将掺杂的GaN外延层加热至至少约1200℃

    Lamp utilizing fiber for enhanced starting field
    10.
    发明授权
    Lamp utilizing fiber for enhanced starting field 有权
    灯具利用光纤增强起始场

    公开(公告)号:US06628079B2

    公开(公告)日:2003-09-30

    申请号:US09838234

    申请日:2001-04-20

    CPC classification number: H01J65/044 H01J61/54 H01J61/545 H01J65/04

    Abstract: A discharge lamp bulb includes a light transmissive envelope and at least one conductive fiber disposed on a wall of the envelope, where the fiber has a thickness of less than 100 microns. The lamp may be either electrodeless or may include internal electrodes. Suitable materials for the fiber(s) include but are not limited to carbon, silicon carbide, aluminum, tantalum, molybdenum, platinum, and tungsten. Silicon carbide whiskers and platinum coated silicon carbide fibers may also be used. The fiber(s) may be aligned with the electrical field, at least during starting. The lamp preferably further includes a protective material covering the fiber(s). For example the protective material may be a sol gel deposited silica coating. Noble gases inside the bulb at pressures in excess of 300 Torr can be reliably ignited at applied electric field strengths of less than 4×105 V/m. Over 2000 Torr xenon, krypton, and argon respectively achieve breakdown with an applied field of less than 3×105 V/m.

    Abstract translation: 放电灯泡包括透光外壳和设置在外壳壁上的至少一个导电纤维,其中纤维的厚度小于100微米。 灯可以是无电极的,也可以包括内部电极。 用于纤维的合适材料包括但不限于碳,碳化硅,铝,钽,钼,铂和钨。 也可以使用碳化硅晶须和铂包覆的碳化硅纤维。 至少在启动期间,纤维可以与电场对准。 灯优选地还包括覆盖纤维的保护材料。 例如,保护材料可以是溶胶凝胶沉积二氧化硅涂层。 在施加的电场强度小于4×10 5 V / m的情况下,能够可靠地点燃超过300托的压力下灯泡内的贵重气体。 超过2000乇,氪和氩分别使用小于3×10 5 V / m的施加电场进行击穿。

Patent Agency Ranking