CONTROL OF ELECTROLYTE SOLUTION IN NANOFLUIDIC CHANNELS
    1.
    发明申请
    CONTROL OF ELECTROLYTE SOLUTION IN NANOFLUIDIC CHANNELS 审中-公开
    电解质在纳米通道中的控制

    公开(公告)号:US20130026030A1

    公开(公告)日:2013-01-31

    申请号:US13644764

    申请日:2012-10-04

    摘要: Various embodiments provide an exemplary lab-on-a-chip (LOC) system that serves as an analytical tool and/or as a separation medium for an electrolyte solution including various charged molecular species. The LOC system can include an integrated nanofluidic FET device in combination with suitable analysis systems. By applying and controlling a longitudinal electric field and a transverse electric potential, the flow and the pH of the electrolyte solution in the nanofluidic channels can be controlled.

    摘要翻译: 各种实施例提供了一种示例性的片上实验室(LOC)系统,其用作用于包括各种带电分子种类的电解质溶液的分析工具和/或作为分离介质。 LOC系统可以与合适的分析系统结合使用集成的纳米流体FET器件。 通过施加和控制纵向电场和横向电势,可以控制纳米流体通道中的电解质溶液的流动和pH。

    HIGH RESOLUTION FOCUSING AND SEPARATION OF PROTEINS IN NANOFLUIDIC CHANNELS
    2.
    发明申请
    HIGH RESOLUTION FOCUSING AND SEPARATION OF PROTEINS IN NANOFLUIDIC CHANNELS 有权
    高分辨率聚焦和分离纳米通道中的蛋白质

    公开(公告)号:US20110192724A1

    公开(公告)日:2011-08-11

    申请号:US13125096

    申请日:2009-10-20

    摘要: Exemplary embodiments provide systems and methods for concentrating, focusing and/or separating proteins using nanofluidic channels and/or their arrays. In embodiments, low-abundance proteins can be focused and separated with high resolution using separation techniques including isoelectric focusing (IEF), and/or dynamic field gradient focusing (DFGF) in combination with nanofluidic channels and/or multi-gate nanofluidic field-effect-transistors (FETs).

    摘要翻译: 示例性实施方案提供用于使用纳米流体通道和/或其阵列浓缩,聚焦和/或分离蛋白质的系统和方法。 在实施方案中,可以使用包括等电聚焦(IEF)和/或动态场梯度聚焦(DFGF)与纳流感通道和/或多栅极纳米流体场效应的分离技术以高分辨率聚焦和分离低丰度蛋白质 晶体管(FET)。

    High resolution focusing and separation of proteins in nanofluidic channels
    3.
    发明授权
    High resolution focusing and separation of proteins in nanofluidic channels 有权
    纳米流体通道中蛋白质的高分辨率聚焦和分离

    公开(公告)号:US08623192B2

    公开(公告)日:2014-01-07

    申请号:US13125096

    申请日:2009-10-20

    IPC分类号: B03C5/02

    摘要: Exemplary embodiments provide systems and methods for concentrating, focusing and/or separating proteins using nanofluidic channels and/or their arrays. In embodiments, low-abundance proteins can be focused and separated with high resolution using separation techniques including isoelectric focusing (IEF), and/or dynamic field gradient focusing (DFGF) in combination with nanofluidic channels and/or multi-gate nanofluidic field-effect-transistors (FETs).

    摘要翻译: 示例性实施方案提供用于使用纳米流体通道和/或其阵列浓缩,聚焦和/或分离蛋白质的系统和方法。 在实施方案中,可以使用包括等电聚焦(IEF)和/或动态场梯度聚焦(DFGF)与纳流感通道和/或多栅极纳米流体场效应的分离技术以高分辨率聚焦和分离低丰度蛋白质 晶体管(FET)。

    Control of electrolyte solution in nanofluidic channels
    4.
    发明授权
    Control of electrolyte solution in nanofluidic channels 有权
    控制纳米流体通道中的电解质溶液

    公开(公告)号:US08303789B1

    公开(公告)日:2012-11-06

    申请号:US12721860

    申请日:2010-03-11

    IPC分类号: G01N27/414 G01N27/447

    摘要: Various embodiments provide an exemplary lab-on-a-chip (LOC) system that serves as an analytical tool and/or as a separation medium for an electrolyte solution including various charged molecular species. The LOC system can include an integrated nanofluidic FET device in combination with suitable analysis systems. By applying and controlling a longitudinal electric field and a transverse electric potential, the flow and the pH of the electrolyte solution in the nanofluidic channels can be controlled.

    摘要翻译: 各种实施例提供了一种示例性的片上实验室(LOC)系统,其用作用于包括各种带电分子种类的电解质溶液的分析工具和/或作为分离介质。 LOC系统可以与合适的分析系统结合使用集成的纳米流体FET器件。 通过施加和控制纵向电场和横向电势,可以控制纳米流体通道中的电解质溶液的流动和pH。

    Method for forming copper interconnections in semiconductor component using electroless plating system
    7.
    发明授权
    Method for forming copper interconnections in semiconductor component using electroless plating system 有权
    使用化学镀系统在半导体部件中形成铜互连的方法

    公开(公告)号:US06486055B1

    公开(公告)日:2002-11-26

    申请号:US10097308

    申请日:2002-03-15

    IPC分类号: H01L214763

    摘要: Disclosed is a method for forming copper interconnections of a semiconductor component using an electroless plating system, which enables copper to be grown only in corresponding interconnection regions. In such a method, a wafer is cleaned, the wafer is pretreated with a metal seed solution so as to cause spontaneous catalytic activation and simultaneously the process temperature is varied to grow metal seed particles from the metal seed pretreating solution, the wafer is cleaned to remove the metal seed from the wafer surface, and the wafer is finally plated with an electroless plating bath to grow copper in the metal seed formed regions. This method simplifies the processes and reduces process costs by substituting a wet process for the existing vacuum pretreating process. Also, a wafer planarization process can be omitted by selectively growing copper only in desired interconnections. Compared with the existing ultraviolet radiation photo process, the selective copper growth process of the method has an advantage of being much simpler.

    摘要翻译: 公开了一种使用化学镀系统形成半导体部件的铜互连的方法,其使铜仅在对应的互连区域中生长。 在这种方法中,清洗晶片,用金属种子溶液预处理晶片以引起自发催化活化,同时改变处理温度以从金属种子预处理溶液中生长金属种子颗粒,将晶片清洁 从晶片表面去除金属种子,最后用无电解镀浴镀覆晶片,以在金属晶种形成区域中生长铜。 该方法通过用湿法替代现有的真空预处理工艺来简化工艺并降低工艺成本。 此外,通过选择性地仅在期望的互连中生长铜,可以省略晶片平坦化工艺。 与现有的紫外线照相工艺相比,该方法的选择性铜生长过程具有更简单的优点。

    SEPARATION AND EXTREME SIZE-FOCUSING OF NANOPARTICLES THROUGH NANOCHANNELS BASED ON CONTROLLED ELECTROLYTIC PH MANIPULATION
    8.
    发明申请
    SEPARATION AND EXTREME SIZE-FOCUSING OF NANOPARTICLES THROUGH NANOCHANNELS BASED ON CONTROLLED ELECTROLYTIC PH MANIPULATION 审中-公开
    基于受控电解质PH操作通过纳米管的纳米颗粒的分离和超大尺寸聚焦

    公开(公告)号:US20080251382A1

    公开(公告)日:2008-10-16

    申请号:US12100841

    申请日:2008-04-10

    IPC分类号: G01N27/26 G01N27/00 B03C5/00

    摘要: Accordance to various embodiments, there are methods of separating molecules, devices, and method of making the devices. The method of separating molecules can include providing a nanofluidic device including a plurality of nanochannels on a top surface of a substrate, wherein each of the plurality of nanochannels has a first end and a second end and extends from the top surface into the substrate. The nanofluidic device can also include a dielectric layer disposed over each of the plurality of nanochannels, an inlet at the first end of the plurality of nanochannnels, an outlet at the second end of the plurality of nanochannels, and an optically transparent cover disposed over the plurality of nanochannels to form a seal. The method of separating molecules can further include providing a solution in the plurality of nanochannels through the inlet and creating a longitudinal pH gradient along each of the plurality of nanochannels.

    摘要翻译: 根据各种实施方案,存在分离分子,装置和制造装置的方法的方法。 分离分子的方法可以包括提供在衬底的顶表面上包括多个纳米通道的纳米流体装置,其中多个纳米通道中的每一个具有第一端和第二端并从顶表面延伸到衬底中。 纳米流体装置还可以包括设置在多个纳米通道中的每一个上的介电层,在多个纳米通道的第一端处的入口,多个纳米通道的第二端处的出口和设置在多个纳米通道上的光学透明盖 多个纳米通道形成密封。 分离分子的方法还可以包括通过入口提供多个纳米通道中的溶液,并沿着多个纳米通道中的每一个产生纵向pH梯度。