摘要:
Accordance to various embodiments, there are methods of separating molecules, devices, and method of making the devices. The method of separating molecules can include providing a nanofluidic device including a plurality of nanochannels on a top surface of a substrate, wherein each of the plurality of nanochannels has a first end and a second end and extends from the top surface into the substrate. The nanofluidic device can also include a dielectric layer disposed over each of the plurality of nanochannels, an inlet at the first end of the plurality of nanochannnels, an outlet at the second end of the plurality of nanochannels, and an optically transparent cover disposed over the plurality of nanochannels to form a seal. The method of separating molecules can further include providing a solution in the plurality of nanochannels through the inlet and creating a longitudinal pH gradient along each of the plurality of nanochannels.
摘要:
Various embodiments provide an exemplary lab-on-a-chip (LOC) system that serves as an analytical tool and/or as a separation medium for an electrolyte solution including various charged molecular species. The LOC system can include an integrated nanofluidic FET device in combination with suitable analysis systems. By applying and controlling a longitudinal electric field and a transverse electric potential, the flow and the pH of the electrolyte solution in the nanofluidic channels can be controlled.
摘要:
Various embodiments provide an exemplary lab-on-a-chip (LOC) system that serves as an analytical tool and/or as a separation medium for an electrolyte solution including various charged molecular species. The LOC system can include an integrated nanofluidic FET device in combination with suitable analysis systems. By applying and controlling a longitudinal electric field and a transverse electric potential, the flow and the pH of the electrolyte solution in the nanofluidic channels can be controlled.
摘要:
Exemplary embodiments provide systems and methods for concentrating, focusing and/or separating proteins using nanofluidic channels and/or their arrays. In embodiments, low-abundance proteins can be focused and separated with high resolution using separation techniques including isoelectric focusing (IEF), and/or dynamic field gradient focusing (DFGF) in combination with nanofluidic channels and/or multi-gate nanofluidic field-effect-transistors (FETs).
摘要:
Exemplary embodiments provide systems and methods for concentrating, focusing and/or separating proteins using nanofluidic channels and/or their arrays. In embodiments, low-abundance proteins can be focused and separated with high resolution using separation techniques including isoelectric focusing (IEF), and/or dynamic field gradient focusing (DFGF) in combination with nanofluidic channels and/or multi-gate nanofluidic field-effect-transistors (FETs).
摘要:
A method for etching features in an etch layer is provided. An organic mask layer is etched, using a hard mask as an etch mask. The hard mask is removed, by selectively etching the hard mask with respect to the organic mask and etch layer. Features are etched in the etch layer, using the organic mask as an etch mask.
摘要:
A method for etching features in an etch layer is provided. An organic mask layer is etched, using a hard mask as an etch mask. The hard mask is removed, by selectively etching the hard mask with respect to the organic mask and etch layer. Features are etched in the etch layer, using the organic mask as an etch mask.
摘要:
Disclosed is a method for forming copper interconnections of a semiconductor component using an electroless plating system, which enables copper to be grown only in corresponding interconnection regions. In such a method, a wafer is cleaned, the wafer is pretreated with a metal seed solution so as to cause spontaneous catalytic activation and simultaneously the process temperature is varied to grow metal seed particles from the metal seed pretreating solution, the wafer is cleaned to remove the metal seed from the wafer surface, and the wafer is finally plated with an electroless plating bath to grow copper in the metal seed formed regions. This method simplifies the processes and reduces process costs by substituting a wet process for the existing vacuum pretreating process. Also, a wafer planarization process can be omitted by selectively growing copper only in desired interconnections. Compared with the existing ultraviolet radiation photo process, the selective copper growth process of the method has an advantage of being much simpler.