摘要:
Analysis of an electromagnetic wave traveling in an optical device, can be performed quickly and correctly. A structure forming process simulator forms an analysis structure of a physical object to be analyzed. A hybrid optical simulator calculates time-independent data and time-dependent data of an electromagnetic field by dividing the analysis structure into parts, determining whether a metallic or magnetic material is included in each of the divided parts, and selectively applying a Beam Propagation Method (BPM) or a Finite Difference Time Domain (FDTD) method to the divided parts. A storage device stores the time-independent data and the time-dependent data output from the hybrid optical simulator as hybrid electric field data. Related methods are also described.
摘要:
An example embodiment relates to a semiconductor memory device including a plurality of cylindrical bottom electrodes arranged in a first direction and in a second direction. The device includes a supporting base configured to support the plurality of cylindrical bottom electrodes by contacting side surfaces of the plurality of cylindrical bottom electrodes. The supporting base includes first patterns in which first open areas are formed, and second patterns in which second open areas are formed. The first patterns and the second patterns have different oriented shapes.
摘要:
The present invention provides a flat fluorescent lamp. The flat fluorescent lamp comprises a single plate. Consequently, the flat fluorescent lamp is structurally safe, brightness of the flat fluorescent lamp is high, and efficiency of the flat fluorescent lamp is also high without the provision of other additional optical components. The present invention also provides a method of manufacturing such a flat fluorescent lamp.
摘要:
The present invention provides a flat fluorescent lamp. The flat fluorescent lamp comprises a single plate. Consequently, the flat fluorescent lamp is structurally safe, brightness of the flat fluorescent lamp is high, and efficiency of the flat fluorescent lamp is also high without the provision of other additional optical components. The present invention also provides a method of manufacturing such a flat fluorescent lamp.
摘要:
The present invention provides a flat fluorescent lamp. The flat fluorescent lamp comprises a single plate. Consequently, the flat fluorescent lamp is structurally safe, brightness of the flat fluorescent lamp is high, and efficiency of the flat fluorescent lamp is also high without the provision of other additional optical components. The present invention also provides a method of manufacturing such a flat fluorescent lamp.
摘要:
A unified simulation system is provided. The unified simulation system includes an input database storing input data comprising an input parameter and environment information, a unified simulator executing a unified process-device-circuit simulation of characteristics of a semiconductor apparatus based on the input data and at least one predetermined model and outputting a simulation result as output data, and an output database storing the output data. The unified simulator includes a process simulator simulating at least one process based on the input data and outputting process characteristic data, a device simulator simulating at least one device based on the process characteristic data and outputting device characteristic data, and a circuit simulator simulating a circuit comprising the at least one device. Accordingly, multiple devices can be simultaneously optimized for the optimization of circuit characteristics and an accurate specification at process and device levels can be provided.
摘要:
Disclosed is a simulation method for determining wafer warpage. This method includes dividing layers and evaluating a composition ratio of materials composing the layers. The method mathematically transforms a semiconductor device, which is constructed as a complicated structure with various materials, into a simplified, mathematically equivalent stacked structure comprising a plurality of unit layer, and utilizes values of mechanical characteristics, which are obtained from the transformed layer structure, for estimating wafer warpage. As a result, it is possible to complete an operation of wafer warpage simulation using information about pattern density of the semiconductor device.
摘要:
The present invention can provide ion implanter devices including an arc chamber including at least a first inner region and a second inner region, an electron emitting device disposed in the arc chamber adjacent the first inner region and adapted to emit electrons, an electron returning device disposed in the arc chamber adjacent the second inner region and adapted to return at least some of the electrons emitted from the electron emitting device into the second inner region; and an electric field and magnetic field generating device adapted to provide a magnetic field to the arc chamber, wherein at least one inner wall of the arc chamber has a convex surface.
摘要:
A unified simulation system is provided. The unified simulation system includes an input database storing input data comprising an input parameter and environment information, a unified simulator executing a unified process-device-circuit simulation of characteristics of a semiconductor apparatus based on the input data and at least one predetermined model and outputting a simulation result as output data, and an output database storing the output data. The unified simulator includes a process simulator simulating at least one process based on the input data and outputting process characteristic data, a device simulator simulating at least one device based on the process characteristic data and outputting device characteristic data, and a circuit simulator simulating a circuit comprising the at least one device. Accordingly, multiple devices can be simultaneously optimized for the optimization of circuit characteristics and an accurate specification at process and device levels can be provided.
摘要:
A semiconductor device including a substrate having a trench formed therein, a plurality of gate structures, an isolation layer pattern and an insulating interlayer pattern. The substrate includes a plurality of active regions defined by the trench and spaced apart from each other in a second direction. Each of the active regions extends in a first direction substantially perpendicular to the second direction. Each of the plurality of gate structures includes a tunnel insulation layer pattern, a floating gate, a dielectric layer pattern and a control gate sequentially stacked on the substrate. The isolation layer pattern is formed in the trench. First isolation layer pattern has at least one first air gap between sidewalls of at least one adjacent pair of the floating gates. The insulating interlayer pattern is formed between the gate structures, and the first insulating interlayer pattern extends in the second direction.