Abstract:
A vibration motor includes a first resilient member and a second resilient member providing resilient forces in opposite directions; a first vibrator and a second vibrator coupled to the first resilient member and the second resilient member respectively; a magnetic body coupled to the first vibrator to create a magnetic field; and a coil applying a current of a predetermined frequency band in the region where the magnetic field is created.
Abstract:
A vibration motor includes a first resilient member and a second resilient member providing resilient forces in opposite directions; a first vibrator and a second vibrator coupled to the first resilient member and the second resilient member respectively; a magnetic body coupled to the first vibrator to create a magnetic field; and a coil applying a current of a predetermined frequency band in the region where the magnetic field is created.
Abstract:
Disclosed is a method for manufacturing a semiconductor optical device for flip-chip bonding. The method includes the steps of: etching an active layer and clad which are sequentially stacked on a semiconductor substrate into first and second alignment keys and an optical area, which has a mesa structure; growing at least two insulating layers at mesa-etched portions between the first and second alignment keys and the optical areas; and forming protection masks on the first and second alignment keys, growing an electrode on the optical area and the insulating layer except for the protection masks, and removing the protection masks.
Abstract:
A vertical-cavity surface emitting laser includes a substrate and a first mirror that is grown on the substrate, a second mirror grown on the first mirror for resonating the first mirror and light, an active layer between the first mirror and the second mirror for generating and amplifying the light, an upper electrode grown on the active layer and a lower electrode formed on the first mirror for supplying current to the active layer, a planarizing polymer formed on the first mirror for burying the active layer and the second layer, and a first external terminal extending from the upper electrode in a vertical upward direction to be exposed to the top surface of the planarizing polymer and a second external terminal extending from the lower electrode to expose its one surface to the top surface of the planarizing polymer.
Abstract:
An optical module comprises a waveguide, at least one optical transducer positioned on the waveguide for transducing an optical signal into an electric signal or an electric signal into an optical signal and a connection socket seated on the waveguide, the optical transducer being mounted in the connection socket.
Abstract:
A photonic integrated device using a reverse-mesa structure and a method for fabricating the same are disclosed. The photonic integrated device includes a first conductive substrate on which a semiconductor laser, an optical modulator, a semiconductor optical amplifier, and a photo detector are integrated, a first conductive clad layer and an active layer sequentially formed on the first conductive substrate in the form of a mesa structure, a second conductive clad layer formed on the active layer in the form of a reverse-mesa structure, an ohmic contact layer formed on the second clad layer in such a manner that the ohmic contact layer has a width narrower than the width of an upper surface of the second conductive clad layer, a current shielding layer filled in a sidewall having a mesa and reverse-mesa structure, and at least one window area formed between the above elements.
Abstract:
A semiconductor optical device, which includes a semiconductor substrate, an electro-absorption modulator, and at least one optical device is monolithically integrated on the semiconductor substrate. An insulative layer surrounds the electro-absorption modulator and the optical devices on the semiconductor substrate, at least two metallic pads, one of which being an electrode of the modulator, are formed at a distance from each other on the insulative layer. A plurality of metallic wires are adapted for electrically connecting the electro-absorption modulator to the metallic pads and adjusting a value of inductance of the electro-absorption modulator. The metallic wires are formed on the insulative layer. A dielectric layer formed under the insulative layer provides a minimizing of parasitic capacitance generated in the metallic pads and the metallic wires by being formed under the metallic pads and the metallic wires.
Abstract:
A haptic feedback control method and apparatus for a wireless terminal including a touch screen. The haptic feedback control method includes receiving a touch input from a user, sensing a voltage or current signal at a position where the touch input is received, transmitting a driving signal to an actuator based on the sensed signal, generating, by the actuator, a vibration output based on the driving signal at the position on the touch screen where the touch input is received, generating a control pulse having a predetermined time delay while generating the vibration output, and stopping the vibration output by applying the control pulse to the vibration output.
Abstract:
Provided is an apparatus and method for generating vibrations in a wireless terminal, in which vibrations of strengths corresponding to respective regions are generated by using a plurality of piezos. The apparatus includes a plurality of piezos, a touch screen portion including a plurality of regions, and a controller for, upon detection of a touch on a predetermined region among the plurality of regions of the touch screen portion, generating vibrations of strengths according to power frequencies and power polarities of the plurality of piezos with respect to the touched region.
Abstract:
A method and apparatus for generating vibration in a portable terminal are provided. The apparatus for generating vibration in a portable terminal includes a plurality of vibrators mounted and driven to generate vibration in a single vibration direction at positions separated from each other by predetermined distances on the portable terminal, and a controller for determining respective vibration patterns of the plurality of vibrators according to a control operation of the portable terminal and driving the plurality of vibrators according to the vibration patterns.