摘要:
A method of assembling a photoelectric conversion module is disclosed. The photoelectric conversion module includes a circuit board on which are mounted a light emitting element, a light receiving element, and an optical element optically connected to the light emitting element and the light receiving element. The light emitting element is positioned on the circuit board based on a positioning mark formed on the circuit board beforehand. The light receiving element and the optical element are positioned based on a position of a light emission point of the light emitting element.
摘要:
A method of assembling a photoelectric conversion module is disclosed. The photoelectric conversion module includes a circuit board on which are mounted a light emitting element, a light receiving element, and an optical element optically connected to the light emitting element and the light receiving element. The light emitting element is positioned on the circuit board based on a positioning mark formed on the circuit board beforehand. The light receiving element and the optical element are positioned based on a position of a light emission point of the light emitting element.
摘要:
A mounting structure for a semiconductor element is disclosed. The semiconductor element is bonded to a die pad through an adhesive film, which is formed by applying a predetermined amount of a paste adhesive onto the surface of the die pad and placing the semiconductor element on the die pad so as to press and spread the adhesive between the lower surface of the semiconductor element and the die pad. A wire extends between the semiconductor element and a terminal pad disposed around the die pad. The die pad includes plural grooves in the surface thereof. Each of the grooves extends from the center of the die pad toward a peripheral edge of the die pad and ends at the inner side of the peripheral edge of the die pad.
摘要:
An optical connector is disclosed. The optical connector includes a first waveguide member that includes a first waveguide, a first lens disposed at one end surface of the first waveguide, and a second lens disposed at the other end surface of the first waveguide.
摘要:
An optical transceiver using an optical waveguide holding member is disclosed. The optical transceiver includes a printed circuit board and the optical waveguide holding member. Photoelectric conversion elements are formed in the printed circuit board. An optical waveguide including core members is formed in the optical waveguide holding member. The optical waveguide optically connects the photoelectric conversion elements to external optical fibers. An element side lens is formed at one end of the core member so as to face a light receiving and emitting section of the photoelectric conversion element. Flanges are formed on the corresponding side walls of the optical waveguide holding member. The fixed centers of the flanges and optical centers of the element side lenses are arrayed on the same straight line.
摘要:
An optical transceiver using an optical waveguide holding member is disclosed. The optical transceiver includes a printed circuit board and the optical waveguide holding member. Photoelectric conversion elements are formed in the printed circuit board. An optical waveguide including core members is formed in the optical waveguide holding member. The optical waveguide optically connects the photoelectric conversion elements to external optical fibers. An element side lens is formed at one end of the core member so as to face a light receiving and emitting section of the photoelectric conversion element. Flanges are formed on the corresponding side walls of the optical waveguide holding member. The fixed centers of the flanges and optical centers of the element side lenses are arrayed on the same straight line.
摘要:
A mounting structure for a semiconductor element is disclosed. The semiconductor element is bonded to a die pad through an adhesive film, which is formed by applying a predetermined amount of a paste adhesive onto the surface of the die pad and placing the semiconductor element on the die pad so as to press and spread the adhesive between the lower surface of the semiconductor element and the die pad. A wire extends between the semiconductor element and a terminal pad disposed around the die pad. The die pad includes plural grooves in the surface thereof. Each of the grooves extends from the center of the die pad toward a peripheral edge of the die pad and ends at the inner side of the peripheral edge of the die pad.