摘要:
A method for improving capacitance uniformity in a MIM device, mainly for the purpose of improving uniformity of a thin film within the MIM device, includes eight steps in order and step S2-step S6 may be repeated for several times as needed. According to the method for improving capacitance uniformity in a MIM device of the present invention, a certain quantity of defects in the thin film are removed by means of several times of deposition/plasma processes based on the current PECVD, and uniformity of the deposited thin film is increased, thereby improving uniformity in wet etching rate of the thin film and further improving capacitance uniformity in the MIM device.
摘要:
The invention discloses a method for adjusting metal polishing rate and reducing defects arisen in a polishing process, in which a electric conduction system is additionally provided to a polishing apparatus to electrify the polishing fluid; in the polishing process, the polishing fluid flows through the polishing pad and the wafer to be polished, such that the polished metal surface of the wafer is electrically charged so as to control the oxidation of the polished metal surface of the wafer. The invention has solved the problem that the dishing and erosion defects are prone to be formed in the existing polishing process, the potential of the polishing fluid is changed by means of the additional electric conduction system and thus the polishing rate of the polished metal is controlled so as to reduce the dishing and erosion defects occurred in the polishing process.
摘要:
The present invention provides a method of forming semiconductor devices using SMT. The method comprises providing a substrate; depositing an SiO2 buffer film and a low tensile stress SiN film on the substrate; applying photoresist over the low tensile stress SiN film and exposing the low tensile stress SiN film on the NMOS region through photoresist exposure; applying UV radiation to the exposed low tensile stress SiN film; removing some hydrogen in the low tensile stress SiN film on the NMOS region and removing photoresist over the PMOS region; performing a rapid thermal annealing process to induce tensile stress in the NMOS channel region; and removing the SiN film and the SiO2 buffer film. According to the method of forming semiconductor devices using SMT of the present invention, the conventional SMT is greatly simplified.
摘要:
The present invention provides a method for preparing spacer to reduce coupling interference in MOSFET, which includes the steps of: forming a gate oxide layer on the semiconductor substrate; forming a gate on the gate oxide layer; and depositing a low-K dielectric material on the gate and the semiconductor substrate, and doping with carbon during deposition to form a carbon-containing low-K dielectric layer and then forming the spacer by an etching process.
摘要:
A method for preparing a shallow trench isolation structure with the stress of its isolation oxide being tuned by ion implantation comprises: step a: forming a protective layer on a semiconductor substrate; step b: forming trenches for isolating PMOS active regions and NMOS active regions on the semiconductor substrate and the protective layer; step c: forming a filling material layer in the trenches, so that the trenches are fully filled with the filling material layer to form shallow trench isolation structures. The advantageous is that, as for a device where a HARP process is applied to its shallow trench isolation, the stress in the STI can be tuned so as to be changed from tensile stress into compressive stress by performing ion implantation to the STI around the PMOS, therefore the stress state of the PMOS channel region may be changed and the performance thereof is improved.
摘要:
The invention relates to a method for fabricating copper interconnections in an ultra low dielectric constant film, comprising the following steps of: depositing an etching stop layer on a silicon wafer, depositing an ultra-low-k film on the etching stop layer, and depositing a SiO2-riched layer on the ultra-low-k film; forming a via and/or trench that penetrates through the SiO2-riched layer and the ultra-low-k film by using a photo-lithography and etching process; sputter-depositing a metal barrier layer and a copper seed crystal layer within the via and/or trench, performing a copper filling deposition by an electroplating process, performing a chemical mechanical polishing until the SiO2-riched layer is reached, whereby forming a copper interconnection layer. Since the SiO2-riched layer and the ultra-low-k film can be deposited in the same tool, this method has the , advantages of shortening the production period, lowering the production cost and improving the adhesion in the copper interconnection structure.
摘要:
A method of manufacturing high performance metal-oxide-metal capacitor device that resolves problems with implementing high capacitance in the metal-oxide-metal region by filling with a low-k material both in the metal-oxide-metal region and the metal interconnection region, utilizing performing selective photolithography and etching of the first dielectric layer to define metal-oxide-metal (MOM for short) region, and filling the MOM region with high dielectric constant (high-k) material to realize a high performance MOM capacitor.
摘要:
The present invention provides a multi-working voltages CMOS device with single gate oxide layer thickness, gate work functions of CMOS transistors are regulated by implanting ions with different work functions into metal oxide dielectric material layers of the CMOS transistors, thus to realize different flat-band voltages under the condition of single dielectric layer thickness, and realize a multi-working voltages CMOS structure under the condition of single dielectric layer thickness. The present invention overcomes the process complexity of multiple kinds of gate dielectric layer thicknesses needed by traditional multi-working voltages CMOS, simplifies the CMOS process, makes the manufacturing procedure simple and easy to execute, reduces the preparation cost and is suitable for industrial production.
摘要:
A method for manufacturing a gate-last high-K CMOS structure comprising a first transistor and a second transistor, which is formed in a Si substrate includes: implanting acceptor impurity into a gate recess of the first transistor to form a first buried-layer heavily doping region under a channel of the first transistor; and implanting donor impurity into a gate recess of the second transistor to form a second buried-layer heavily doping region under a channel of the second transistor.
摘要:
The manufacturing method of the high performance metal-oxide-metal according to the present invention resolves the problems of implementing high capacitance in the metal-oxide-metal region by the steps of filling with a low-k material both in the metal-oxide-metal region and the metal interconnection region, utilizing performing selective photolithography and etching of the first dielectric layer to define metal-oxide-metal (MOM for short) region, and fulfilling the MOM region with high dielectric constant (high-k) material to realize a high performance MOM capacitor. Using the present method, high-k material and low-k material within the same film layer are realized. High-k material region is used as MOM to achieve high capacitor c, thereby reducing the area used by chips and further improving the electrics performance.