Abstract:
An emitting device (1) is intended for delivering photons with a chosen wavelength. This emitting device (1) comprises an InP substrate (2) with a directly modulated laser (3) arranged for generating photons modulated by a non-return-to-zero modulation to produce data to be transmitted, a passive ring resonator (4) monolithically integrated with the directly modulated laser (3) and having a resonance amongst several ones that is used for filtering a zero level induced by the data modulation, and a tuning means (5) arranged along the directly modulated laser (3) and/or around the ring resonator (4) to tune the photon wavelength and/or the ring resonator resonance used for filtering.
Abstract:
A tunable laser device comprises a multi-section distributed feedback (DFB) laser having a first Bragg section including a waveguide and a Bragg grating, a second Bragg section comprising a waveguide and a Bragg grating, and a phase section being longitudinally located between the first Bragg section and the second Bragg section. The phase section is made of a passive material, and each Bragg section has a first longitudinal end joining the phase section and a second longitudinal end opposed to the phase section. The Bragg grating of at least one Bragg section has a grating coupling coefficient which decreases from the first longitudinal end to the second longitudinal end of the at least one Bragg section.