Abstract:
Embodiments of the present disclosure provide a digital filter module for use in receivers, particularly suitable for use in a narrow-band electromagnetic receiver. Design of the module is based on a recognition that providing to the module samples of a signal received by a receiver and sampled at a sampling frequency equal to four times the intermediate frequency of the receiver, eliminating zeros in the filter, and implementing the filter module as a resource-shared second-order filter structure that includes two sections advantageously enables saving some hardware components, particularly some multipliers and adders, in implementing a versatile digital filter module that can function either as two real filters or one complex filter. In this manner, substantial reduction of area and power consumption of the filter module may be achieved, while maintaining sufficiently high filtering performance.
Abstract:
An apparatus comprising: a signal detection circuit determine a count reached by a counter between successive detected edge signals and to provide an indication of whether successive detected edge signals are separated from each other by at least a prescribed time interval; a clock circuit that produces clock signal pulses in response to a provided indication of an occurrence of a succession of detected edge signals each separated from a previous edge signal of the succession by at least the prescribed time interval; phase matching circuitry configured to align the produced clock signal pulses with detected edge signals; and a pattern matching circuit that that samples a sequence of detected edge signals aligned with the produced clock signal pulses to detect a data packet.
Abstract:
A monitoring circuit for monitoring the performance of a phase locked loop having a divider therein, the divider comprising at least a first counter, the monitoring circuit comprising at least one memory element for capturing a value of the first counter after a predetermined time from a system event in the operation of the phase locked loop, a variability calculator for comparing a value of the counter with a preceding value of the counter to calculate a variation, and a circuit responsive to the estimate of variation for outputting a status signal.
Abstract:
An apparatus comprising: a signal detection circuit determine a count reached by a counter between successive detected edge signals and to provide an indication of whether successive detected edge signals are separated from each other by at least a prescribed time interval; a clock circuit that produces clock signal pulses in response to a provided indication of an occurrence of a succession of detected edge signals each separated from a previous edge signal of the succession by at least the prescribed time interval; phase matching circuitry configured to align the produced clock signal pulses with detected edge signals; and a pattern matching circuit that that samples a sequence of detected edge signals aligned with the produced clock signal pulses to detect a data packet.
Abstract:
An LIF receiver includes a receiver path comprising: a mixer for mixing a received RF signal with a local oscillator signal to provide an IF signal at a lower frequency than the received RF signal, a bandpass filter for filtering the IF signal, a PGA for amplifying the filtered IF signal, an ADC for converting the amplified filtered IF signal to a digital signal, a converter for converting the digital signal to a baseband digital signal, and an AGC for setting a gain of the PGA in response to a magnitude of the received RF signal. A programmable DC signal source injects a programmed DC offset signal into the amplified filtered IF signal converted by the ADC, and a signal sensor, operatively connected to the receiver path after the PGA, determines a polarity of PGA signal output for a programmed DC offset signal. A controller determines a programmed DC offset signal minimizing a magnitude of the baseband signal in the absence of a received RF signal for at least one gain setting of the PGA.
Abstract:
Apparatus and method for clock and data recovery are disclosed. A reset circuit counts clock cycles between edges of an input signal and resets a signal processing circuit that performs acquisition and tracking of a data stream when the clock cycle count is outside of a range. The signal processing circuit is further configured to perform acquisition and tracking according to a corrected data rate, which can be generated by data rate adjustment through a phase error correcting control loop and/or dithering between two data rates.
Abstract:
An apparatus comprising: a signal detection circuit determine a count reached by a counter between successive detected edge signals and to provide an indication of whether successive detected edge signals are separated from each other by at least a prescribed time interval; a clock circuit that produces clock signal pulses in response to a provided indication of an occurrence of a succession of detected edge signals each separated from a previous edge signal of the succession by at least the prescribed time interval; phase matching circuitry configured to align the produced clock signal pulses with detected edge signals; and a pattern matching circuit that that samples a sequence of detected edge signals aligned with the produced clock signal pulses to detect a data packet.
Abstract:
A clock and data recovery (CDR) system may use one or more clock signals in sync with recovered data rate. By accumulating a dithering tuning counter value at a data oversampling rate, a plurality of single bit signals at multiples of the recovered data rate and in sync with the recovered data rate can be accurately generated while utilizing the full range of the accumulator. This plurality of clock signals can be used in various modules in the CDR system and other modules in a transceiver system incorporating the CDR system.
Abstract:
Apparatus and method for clock and data recovery are disclosed. A reset circuit counts clock cycles between edges of an input signal and resets a signal processing circuit that performs acquisition and tracking of a data stream when the clock cycle count is outside of a range. The signal processing circuit is further configured to perform acquisition and tracking according to a corrected data rate, which can be generated by data rate adjustment through a phase error correcting control loop and/or dithering between two data rates.
Abstract:
An LIF receiver includes a receiver path comprising: a mixer for mixing a received RF signal with a local oscillator signal to provide an IF signal at a lower frequency than the received RF signal, a bandpass filter for filtering the IF signal, a PGA for amplifying the filtered IF signal, an ADC for converting the amplified filtered IF signal to a digital signal, a converter for converting the digital signal to a baseband digital signal, and an AGC for setting a gain of the PGA in response to a magnitude of the received RF signal. A programmable DC signal source injects a programmed DC offset signal into the amplified filtered IF signal converted by the ADC, and a signal sensor, operatively connected to the receiver path after the PGA, determines a polarity of PGA signal output for a programmed DC offset signal. A controller determines a programmed DC offset signal minimizing a magnitude of the baseband signal in the absence of a received RF signal for at least one gain setting of the PGA.