摘要:
A system for synthesizing carbon nanotubes (CNT) on a fiber material includes a surface treatment system adapted to modify the surface of the fiber material to receive a barrier coating upon which carbon nanotubes are to be grown, a barrier coating application system downstream of the surface treatment system adapted to apply the barrier coating to the treated fiber material surface, and a barrier coating curing system downstream of the barrier coating application systems for partially curing the applied barrier coating to enhance reception of CNT growth catalyst nanoparticles.
摘要:
A system for synthesizing carbon nanotubes (CNT) on a fiber material includes a surface treatment system adapted to modify the surface of the fiber material to receive a barrier coating upon which carbon nanotubes are to be grown, a barrier coating application system downstream of the surface treatment system adapted to apply the barrier coating to the treated fiber material surface, and a barrier coating curing system downstream of the barrier coating application systems for partially curing the applied barrier coating to enhance reception of CNT growth catalyst nanoparticles.
摘要:
Carbon nanostructures free of an adhered growth substrate can include a plurality of carbon nanotubes that are branched, crosslinked, and share common walls with one another. Under applied shear, crosslinks between the carbon nanotubes in carbon nanostructures can break to form fractured carbon nanotubes that are branched and share common walls. Methods for making polymer composites from carbon nanostructures can include combining a polymer matrix and a plurality of carbon nanostructures that are free of an adhered growth substrate, and dispersing the carbon nanostructures in the polymer matrix under applied shear. The applied shear breaks crosslinks between the carbon nanotubes to form a plurality of fractured carbon nanotubes that are dispersed as individuals in the polymer matrix. Polymer composites can include a polymer matrix and a plurality of fractured carbon nanotubes dispersed as individuals in the polymer matrix.
摘要:
Carbon nanostructures free of an adhered growth substrate can include a plurality of carbon nanotubes that are branched, crosslinked, and share common walls with one another. Under applied shear, crosslinks between the carbon nanotubes in carbon nanostructures can break to form fractured carbon nanotubes that are branched and share common walls. Methods for making polymer composites from carbon nanostructures can include combining a polymer matrix and a plurality of carbon nanostructures that are free of an adhered growth substrate, and dispersing the carbon nanostructures in the polymer matrix under applied shear. The applied shear breaks crosslinks between the carbon nanotubes to form a plurality of fractured carbon nanotubes that are dispersed as individuals in the polymer matrix. Polymer composites can include a polymer matrix and a plurality of fractured carbon nanotubes dispersed as individuals in the polymer matrix.
摘要:
A composition includes a carbon nanotube (CNT)-infused carbon fiber material that includes a carbon fiber material of spoolable dimensions and carbon nanotubes (CNTs) infused to the carbon fiber material. The infused CNTs are uniform in length and uniform in distribution. The CNT infused carbon fiber material also includes a barrier coating conformally disposed about the carbon fiber material, while the CNTs are substantially free of the barrier coating. A continuous CNT infusion process includes: (a) functionalizing a carbon fiber material; (b) disposing a barrier coating on the functionalized carbon fiber material (c) disposing a carbon nanotube (CNT)-forming catalyst on the functionalized carbon fiber material; and (d) synthesizing carbon nanotubes, thereby forming a carbon nanotube-infused carbon fiber material.
摘要:
A composition includes a carbon nanotube (CNT)-infused metal fiber material which includes a metal fiber material of spoolable dimensions, a barrier coating conformally disposed about the metal fiber material, and carbon nanotubes (CNTs) infused to the metal fiber material. A continuous CNT infusion process includes: (a) disposing a barrier coating and a carbon nanotube (CNT)-forming catalyst on a surface of a metal fiber material of spoolable dimensions; and (b) synthesizing carbon nanotubes on the metal fiber material, thereby forming a carbon nanotube-infused metal fiber material.
摘要:
A system for synthesizing carbon nanotubes (CNT) on a fiber material includes a surface treatment system adapted to modify the surface of the fiber material to receive a barrier coating upon which carbon nanotubes are to be grown, a barrier coating application system downstream of the surface treatment system adapted to apply the barrier coating to the treated fiber material surface, and a barrier coating curing system downstream of the barrier coating application systems for partially curing the applied barrier coating to enhance reception of CNT growth catalyst nanoparticles.