Abstract:
Measures, including methods, systems, processors and computer programs, for use in operating a virtual reality user device. A change in a real world environment in which a user of the virtual reality user device is physically located is detected. In response to the detection, an alert mechanism is initiated at the virtual reality user device to alert the user of the change detected in the real world environment.
Abstract:
A data processing apparatus and method are provided for performing address translation in response to a memory access request issued by processing circuitry of the data processing apparatus and specifying a virtual address for a data item. Address translation circuitry performs an address translation process with reference to at least one descriptor provided by at least one page table, in order to produce a modified memory access request specifying a physical address for the data item. The address translation circuitry includes page table walk circuitry configured to generate at least one page table walk request in order to retrieve the at least one descriptor required for the address translation process. In addition, walk ahead circuitry is located in a path between the address translation circuitry and a memory device containing the at least one page table. The walk ahead circuitry comprises detection circuitry used to detect a memory page table walk request generated by the page table walk circuitry of the address translation circuitry for a descriptor in a page table. In addition, the walk ahead circuitry has further request generation circuitry which is used to generate a prefetch memory request in order to prefetch data from the memory device at a physical address determined with reference to the descriptor requested by the detected memory page table walk request. This prefetched data may be another descriptor required as part of the address translation process, or may be the actual data item being requested by the processing circuitry. Such an approach can significantly reduce latency associated with the address translation process.
Abstract:
Cache line data and metadata are compressed and stored in first and, optionally, second memory regions, the metadata including an address tag When the compressed data fit entirely within a primary block in the first memory region, both data and metadata are retrieved in a single memory access. Otherwise, overflow data is stored in an overflow block in the second memory region. The first and second memory regions may be located in the same row of a DRAM, for example, or in different regions of a DRAM and may be configured to enable standard DRAM components to be used. Compression and decompression logic circuits may be included in a memory controller.
Abstract:
A cache memory and method of operating a cache memory are provided. The cache memory comprises cache storage that stores cache lines for a plurality of requesters and cache control circuitry that controls insertion of a cache line into the cache storage when a memory access request from one of the plurality of requesters misses in the cache memory. The cache memory further has cache occupancy estimation circuitry that holds a count of insertions of cache lines into the cache storage for each of the plurality of requesters over a defined period. The count of cache line insertions for each requester thus provides an estimation of the cache occupancy associated with each requester.
Abstract:
An apparatus for processing data 2 includes a memory 4 having a plurality of memory regions 28 to 38. A mapping controller 56 applies a variable mapping to map memory addresses of access requests to different regions within the memory 4. The mapping controller varies the mapping applied in dependence upon both one or more memory behavioral parameters indicative of behavioral characteristics of the different regions and one or more access behavioral parameters indicative of behavioral characteristics of an access request to be mapped. The memory behavioral parameters may include the temperature of the regions and/or the refresh period of the regions. The access behavior able parameters may include the quality of service level, the access frequency, the access volume and/or the identity of the source of the access request.
Abstract:
An apparatus for processing data includes signature generation circuitry 30, 32 for generating a signature value indicative of the current state of the apparatus in dependence upon a sequence of immediately preceding return addresses generating during execution of a stream of program instructions to reach that state of the apparatus. Prefetch circuitry 10 performs one or more prefetch operations in dependence upon the signature value that is generated. The signature value may be generated by a hashing operation (such as an XOR) performed upon return addresses stored within a return address stack 28.