Abstract:
The present invention provides a glass substrate in which in a step of sticking a glass substrate and a silicon-containing substrate to each other, bubbles hardly intrude therebetween. The present invention relates to a glass substrate for forming a laminated substrate by lamination with a silicon-containing substrate, having a warpage of 2 μm to 300 μm, and an inclination angle due to the warpage of 0.0004° to 0.12°.
Abstract:
A glass substrate for a CIGS solar cell containing specific amounts of SiO2, Al2O3, B2O3, MgO, CaO, SrO, BaO, ZrO2, TiO2, Na2O and K2O, respectively. The glass substrate satisfies the specific requirements regarding MgO+CaO+SrO+BaO, Na2O+K2O, MgO/Al2O3, (2Na2O+K2O+SrO+BaO)/(Al2O3+ZrO2), Na2O/K2O, the relation of Al2O3 and MgO, and the relation of CaO and MgO, respectively. The glass substrate has a glass transition temperature of 640° C. or higher, an average coefficient of thermal expansion within a range of 50 to 350° C. of 70×10−7 to 90×10−7/° C., the temperature (T4) of 1,230° C. or lower, the temperature (T2) of 1,650° C. or lower, and a density of 2.7 g/cm3 or less. The glass substrate satisfies the relationship of T4−TL≧−30° C.
Abstract:
There is provided a glass substrate for observing minute substance, made of porous glass and capable of separating and capturing a minute substance with a 10 to 500 nm average particle diameter contained in a solution or a suspension, comprising a porous glass substrate having a plurality of pores, wherein the plurality of pores has an average pore diameter ranging from 30 to 110% of the average particle diameter of the minute substance, each of the plurality of pores has a surface pore diameter on an uppermost surface of the glass substrate, a standard deviation of the surface pore diameter is 60% or less of the average particle diameter of the minute substance, and a pore with a pore diameter ranging from 60 to 140% of a pore diameter at peak top in a pore diameter distribution of the plurality of pores occupies 90% or more of total pore volume.
Abstract:
A glass substrate for a CdTe solar cell includes a base composition includes, in terms of mol % on a basis of following oxides: from 60 to 75% of SiO2; from 1 to 7.5% of Al2O3; from 0 to 1% of B2O3; from 8.5 to 12.5% of MgO; from 1 to 6.5% of CaO; from 0 to 3% of SrO; from 0 to 3% of BaO; from 0 to 3% of ZrO2; from 1 to 8% of Na2O; and from 2 to 12% of K2O, wherein MgO+CaO+SrO+BaO is from 10 to 24%, Na2O+K2O is from 5 to 15%, MgO/Al2O3 is 1.3 or more, (2Na2O+K2O+SrO+BaO)/(Al2O3+ZrO2) is 3.3 or less, Na2O/K2O is from 0.2 to 2.0, Al2O3≧−0.94MgO+11, and CaO≧0.48MgO+6.5.
Abstract translation:用于CdTe太阳能电池的玻璃基板包括基于以下氧化物的摩尔%的基础组成:60至75%的SiO 2; 1〜7.5%的Al2O3; 0〜1%的B2O3; 8.5〜12.5%的MgO; 1〜6.5%的CaO; 0〜3%的SrO; 0〜3%的BaO; 0〜3%的ZrO2; 1〜8%的Na2O; 和2〜12%的K2O,其中MgO + CaO + SrO + BaO为10〜24%,Na2O + K2O为5〜15%,MgO / Al2O3为1.3以上,(2Na2O + K2O + SrO + BaO )/(Al 2 O 3 + ZrO 2)为3.3以下,Na 2 O / K 2 O为0.2〜2.0,Al 2 O 3≥0.94MgO+ 11,CaO≥0.48MgO+ 6.5。
Abstract:
A glass substrate contains, as a glass matrix composition as represented by mole percentage based on oxides, SiO2: 58-75%, Al2O3: 4.5-16%, B2O3: 0-6%, MgO: 0-6%, CaO: 0-6%, SrO: 5-20%, BaO: 5-20%, and MgO+CaO+SrO+BaO: 15-40%. The glass substrate has an alkali metal oxide content of 0-0.1% as represented by mole percentage based on oxides. The glass substrate has an average coefficient of thermal expansion α of 56-90 (×10−7/° C.) at 50° C.-350° C.
Abstract:
A sintered formed body containing a glass in which undesired coloring in a blackish color, incomplete sintering, a lack of strength, and formation of bubbles are suppressed, and an article provided with the same are provided. Provided are a sintered formed body and an article provided with the same, the sintered formed body consisting of a sintered body containing a glass, and having a thick part with a thickness of 60 μm or more, in which a carbon content from a position of a surface of the thick part to a position at a depth of at least 30 μm from the surface of the thick part is 0.7 to 15 mass ppm.
Abstract:
A glass substrate for a Cu—In—Ga—Se solar cell. The glass substrate contains specific oxides with the specific amounts, respectively. The glass substrate has a glass transition temperature of from 650 to 750° C., an average coefficient of thermal expansion within a range of from 50 to 350° C. of from 75×10−7 to 95×10−7/° C., a relationship between a temperature (T4), at which a viscosity reaches 104 dPa·s, and a devitrification temperature (TL) of T4−TL≧−30° C., a density of 2.6 g/cm3 or less, and a brittleness index of less than 7,000 m−1/2.