摘要:
In some embodiments, silicon-filled openings are formed having no or a low occurrence of voids in the silicon fill, while maintaining a smooth exposed silicon surface. In some embodiments, an opening in a substrate may be filled with silicon, such as amorphous silicon. The deposited silicon may have interior voids. This deposited silicon is then exposed to a silicon mobility inhibitor, such as an oxygen-containing species and/or a semiconductor dopant. The deposited silicon fill is subsequently annealed. After the anneal, the voids may be reduced in size and, in some embodiments, this reduction in size may occur to such an extent that the voids are eliminated.
摘要:
In some embodiments, silicon-filled openings are formed having no or a low occurrence of voids in the silicon fill, while maintaining a smooth exposed silicon surface. In some embodiments, an opening in a substrate may be filled with silicon, such as amorphous silicon. The deposited silicon may have interior voids. This deposited silicon is then exposed to a silicon mobility inhibitor, such as an oxygen-containing species and/or a semiconductor dopant. The deposited silicon fill is subsequently annealed. After the anneal, the voids may be reduced in size and, in some embodiments, this reduction in size may occur to such an extent that the voids are eliminated.
摘要:
In some embodiments, silicon-filled openings are formed having no or a low occurrence of voids in the silicon fill, while maintaining a smooth exposed silicon surface. In some embodiments, an opening in a substrate may be filled with silicon, such as amorphous silicon. The deposited silicon may have interior voids. This deposited silicon is then exposed to a silicon mobility inhibitor, such as an oxygen-containing species and/or a semiconductor dopant. The deposited silicon fill is subsequently annealed. After the anneal, the voids may be reduced in size and, in some embodiments, this reduction in size may occur to such an extent that the voids are eliminated.
摘要:
The invention relates to a method of forming a semiconductor device by patterning a substrate by providing an amorphous silicon layer on the substrate and forming a hard mask layer on the amorphous silicon layer. The amorphous silicon layer is provided with an anti-crystallization dopant to keep the layer amorphous at increased temperatures (relative to not providing the anti-crystallization dopant). The hard mask layer may comprise silicon and nitrogen.
摘要:
Amorphous silicon-filled gaps may be formed having no or a low occurrence of voids in the amorphous silicon fill, while maintaining a smooth exposed silicon surface. A gap in a substrate may be filled with amorphous silicon by heating the substrate to a deposition temperature between 300 and 500° C. and providing a feed gas that comprises a first silicon reactant to deposit an amorphous silicon film into the gap with an hydrogen concentration between 0.1 and 10 at. %. The deposited silicon film may subsequently be annealed. After the anneal, any voids may be reduced in size and this reduction in size may occur to such an extent that the voids may be eliminated.
摘要:
An exemplary embodiment of the present invention provides a method of depositing of a film on semiconductor wafers. In a first step, a film thickness of 3 um or less is deposited on wafers accommodated in a wafer boat in a vertical furnace at a deposition temperature of the furnace while a deposition gas is flowing. During the first step, the temperature may be held substantially constant. In a second step, a temperature deviation or variation of at least 50° C. from the deposition temperature of the first step is applied and the furnace temperature is returned to the deposition temperature of the first step while the flow of the deposition gas is stopped. The first and second steps are repeated until a desired final film thickness is deposited.