摘要:
In some embodiments, silicon-filled openings are formed having no or a low occurrence of voids in the silicon fill, while maintaining a smooth exposed silicon surface. In some embodiments, an opening in a substrate may be filled with silicon, such as amorphous silicon. The deposited silicon may have interior voids. This deposited silicon is then exposed to a silicon mobility inhibitor, such as an oxygen-containing species and/or a semiconductor dopant. The deposited silicon fill is subsequently annealed. After the anneal, the voids may be reduced in size and, in some embodiments, this reduction in size may occur to such an extent that the voids are eliminated.
摘要:
In some embodiments, silicon-filled openings are formed having no or a low occurrence of voids in the silicon fill, while maintaining a smooth exposed silicon surface. In some embodiments, an opening in a substrate may be filled with silicon, such as amorphous silicon. The deposited silicon may have interior voids. This deposited silicon is then exposed to a silicon mobility inhibitor, such as an oxygen-containing species and/or a semiconductor dopant. The deposited silicon fill is subsequently annealed. After the anneal, the voids may be reduced in size and, in some embodiments, this reduction in size may occur to such an extent that the voids are eliminated.
摘要:
In some embodiments, an oxide layer is grown on a semiconductor substrate by oxidizing the semiconductor substrate by exposure to hydrogen peroxide at a process temperature of about 500° C. or less. The exposure to the hydrogen peroxide may continue until the oxide layer grows by a thickness of about 1 Å or more. Where the substrate is a germanium substrate, while oxidation using H2O has been found to form germanium oxide with densities of about 4.25 g/cm3, oxidation according to some embodiments can form an oxide layer with a density of about 6 g/cm3 or more (for example, about 6.27 g/cm3). In some embodiments, another layer of material is deposited directly on the oxide layer. For example, a dielectric layer may be deposited directly on the oxide layer.
摘要翻译:在一些实施例中,通过在约500℃或更低的工艺温度下暴露于过氧化氢来氧化半导体衬底,在半导体衬底上生长氧化物层。 暴露于过氧化氢可持续到氧化层生长约1埃以上的厚度。 当衬底是锗衬底时,虽然已经发现使用H 2 O的氧化形成密度为4.25g / cm 3的氧化锗,但是根据一些实施方案的氧化可以形成密度为约6g / cm 3或更高的氧化物层 例如约6.27g / cm 3)。 在一些实施例中,另一层材料直接沉积在氧化物层上。 例如,介电层可以直接沉积在氧化物层上。
摘要:
In some embodiments, a system is disclosed for delivering hydrogen peroxide to a semiconductor processing chamber. The system includes a process canister for holding a H2O2/H2O mixture in a liquid state, an evaporator provided with an evaporator heater, a first feed line for feeding the liquid H2O2/H2O mixture to the evaporator, and a second feed line for feeding the evaporated H2O2/H2O mixture to the processing chamber, the second feed line provided with a second feed line heater. The evaporator heater is configured to heat the evaporator to a temperature lower than 120° C. and the second feed line heater is configured to heat the feed line to a temperature equal to or higher than the temperature of the evaporator.
摘要:
In some embodiments, a reactive curing process may be performed by exposing a semiconductor substrate in a process chamber to an ambient containing hydrogen peroxide, with the pressure in the process chamber at about 300 Torr or less. In some embodiments, the residence time of hydrogen peroxide molecules in the process chamber is about five minutes or less. The curing process temperature may be set at about 500° C. or less. The curing process may be applied to cure flowable dielectric materials and may provide highly uniform curing results, such as across a batch of semiconductor substrates cured in a batch process chamber.
摘要:
In some embodiments, a reactive curing process may be performed by exposing a semiconductor substrate in a process chamber to an ambient containing hydrogen peroxide, with the pressure in the process chamber at about 300 Torr or less. In some embodiments, the residence time of hydrogen peroxide molecules in the process chamber is about five minutes or less. The curing process temperature may be set at about 500° C. or less. The curing process may be applied to cure flowable dielectric materials and may provide highly uniform curing results, such as across a batch of semiconductor substrates cured in a batch process chamber.
摘要:
In some embodiments, a reactive curing process may be performed by exposing a semiconductor substrate in a process chamber to an ambient containing hydrogen peroxide, with the pressure in the process chamber at about 300 Torr or less. In some embodiments, the residence time of hydrogen peroxide molecules in the process chamber is about five minutes or less. The curing process temperature may be set at about 500° C. or less. The curing process may be applied to cure flowable dielectric materials and may provide highly uniform curing results, such as across a batch of semiconductor substrates cured in a batch process chamber.
摘要:
A process for depositing aluminum nitride is disclosed. The process comprises providing a plurality of semiconductor substrates in a batch process chamber and depositing an aluminum nitride layer on the substrates by performing a plurality of deposition cycles without exposing the substrates to plasma during the deposition cycles. Each deposition cycle comprises flowing an aluminum precursor pulse into the batch process chamber, removing the aluminum precursor from the batch process chamber, and removing the nitrogen precursor from the batch process chamber after flowing the nitrogen precursor and before flowing another pulse of the aluminum precursor. The process chamber may be a hot wall process chamber and the deposition may occur at a deposition pressure of less than 1 Torr.
摘要:
A process for depositing aluminum nitride is disclosed. The process comprises providing a plurality of semiconductor substrates in a batch process chamber and depositing an aluminum nitride layer on the substrates by performing a plurality of deposition cycles without exposing the substrates to plasma during the deposition cycles. Each deposition cycle comprises flowing an aluminum precursor pulse into the batch process chamber, removing the aluminum precursor from the batch process chamber, and removing the nitrogen precursor from the batch process chamber after flowing the nitrogen precursor and before flowing another pulse of the aluminum precursor. The process chamber may be a hot wall process chamber and the deposition may occur at a deposition pressure of less than 1 Torr.
摘要:
In some embodiments, silicon-filled openings are formed having no or a low occurrence of voids in the silicon fill, while maintaining a smooth exposed silicon surface. In some embodiments, an opening in a substrate may be filled with silicon, such as amorphous silicon. The deposited silicon may have interior voids. This deposited silicon is then exposed to a silicon mobility inhibitor, such as an oxygen-containing species and/or a semiconductor dopant. The deposited silicon fill is subsequently annealed. After the anneal, the voids may be reduced in size and, in some embodiments, this reduction in size may occur to such an extent that the voids are eliminated.