Abstract:
A laser beam monitoring system configured to monitor an attribute of an incident laser beam (24), the laser beam monitoring system comprising a beam separating element (30) and a plurality of sensors (34a-34d), wherein the beam separating element is configured to form a plurality of sub-beams (24a-24d) from the incident laser beam (24), a first sub-beam being directed towards a first sensor of the plurality of sensors and a second sub-beam being directed towards a second sensor of the plurality of sensors, wherein relative intensities of the first and second sub-beams are determined by a spatial position at which the incident laser beam is incident upon the beam separating element.
Abstract:
A device manufacturing method includes conditioning a beam of radiation using an illumination system. The conditioning includes controlling an array of individually controllable elements and associated optical components of the illumination system to convert the radiation beam into a desired illumination mode, the controlling including allocating different individually controllable elements to different parts of the illumination mode in accordance with an allocation scheme, the allocation scheme selected to provide a desired modification of one or more properties of the illumination mode, the radiation beam or both. The method also includes patterning the radiation beam having the desired illumination mode with a pattern in its cross-section to form a patterned beam of radiation, and projecting the patterned radiation beam onto a target portion of a substrate.
Abstract:
A radiation source (e.g., LPP— laser produced plasma source) for generation of extreme UV (EUV) radiation has at least two fuel particle streams having different trajectories. Each stream is directed to cross the path of an excitation (laser) beam focused at a plasma formation region, but the trajectories are spaced apart at the plasma formation region, and the streams phased, so that only one stream has a fuel particle in the plasma formation region at any time, and so that when a fuel particle from one stream is generating plasma and EUV radiation at the plasma generation region, other fuel particles are sufficiently spaced so as to be substantially unaffected by the plasma. The arrangement permits potential doubling of the radiation intensity achievable for a particular fuel particle size.
Abstract:
A device manufacturing method includes conditioning a beam of radiation using an illumination system. The conditioning includes controlling an array of individually controllable elements and associated optical components of the illumination system to convert the radiation beam into a desired illumination mode, the controlling including allocating different individually controllable elements to different parts of the illumination mode in accordance with an allocation scheme, the allocation scheme selected to provide a desired modification of one or more properties of the illumination mode, the radiation beam or both. The method also includes patterning the radiation beam having the desired illumination mode with a pattern in its cross-section to form a patterned beam of radiation, and projecting the patterned radiation beam onto a target portion of a substrate.
Abstract:
A radiation source (e.g., LPP—laser produced plasma source) for generation of extreme UV (EUV) radiation has at least two fuel particle streams having different trajectories. Each stream is directed to cross the path of an excitation (laser) beam focused at a plasma formation region, but the trajectories are spaced apart at the plasma formation region, and the streams phased, so that only one stream has a fuel particle in the plasma formation region at any time, and so that when a fuel particle from one stream is generating plasma and EUV radiation at the plasma generation region, other fuel particles are sufficiently spaced so as to be substantially unaffected by the plasma. The arrangement permits potential doubling of the radiation intensity achievable for a particular fuel particle size.
Abstract:
A lithographic apparatus includes an illumination system, support constructed to support patterning device, a projection system, an interferometric sensor and a detector. The interferometric sensor is designed to measure one or more wavefronts of a radiation beam projected by the projection system from an adjustable polarizer. The interferometric sensor includes a diffractive element disposed at a level of a substrate in the lithographic apparatus and a detector spaced apart from the diffractive element, the diffractive element being arranged to provide shearing interferometry between at least two wavefronts mutually displaced in a direction of shear. The detector is designed to determine, from the wavefront measurements, information on polarization affecting properties of the projection system.