Abstract:
Disclosed is an illumination system for a metrology apparatus and a metrology apparatus comprising such an illumination system. The illumination system comprises an illumination source; and a linear variable filter arrangement configured to filter a radiation beam from said illumination source and comprising one or more linear variable filters. The illumination system is operable to enable selective control of a wavelength characteristic of the radiation beam subsequent to it being filtered by the linear variable filter arrangement.
Abstract:
An optical inspection apparatus, including: an optical metrology tool configured to measure structures, the optical metrology tool including: an electromagnetic (EM) radiation source configured to direct a beam of EM radiation along an EM radiation path; and an adaptive optical system disposed in a portion of the EM radiation path and configured to adjust a shape of a wave front of the beam of EM radiation, the adaptive optical system including: a first aspherical optical element; a second aspherical optical element adjacent the first aspherical optical element; and an actuator configured to cause relative movement between the first optical element and the second optical element in a direction different from a beam axis of the portion of the EM radiation path.
Abstract:
A laser driven light source comprises laser and focusing optics. These produce a beam of radiation focused on a plasma forming zone within a container containing a gas (e.g., Xe). Collection optics collects photons emitted by a plasma maintained by the laser radiation to form a beam of output radiation. Plasma has an elongate form (L>d) and collecting optics is configured to collect photons emerging in the longitudinal direction from the plasma. The brightness of the plasma is increased compared with sources which collect radiation emerging transversely from the plasma. A metrology apparatus using the light source can achieve greater accuracy and/or throughput as a result of the increased brightness. Back reflectors may be provided. Microwave radiation may be used instead of laser radiation to form the plasma.
Abstract:
Devices and methods for processing a radiation beam with coherence are disclosed. In one arrangement, an optical system receives a radiation beam with coherence. The radiation beam comprises components distributed over one or more radiation beam spatial modes. A waveguide supports a plurality of waveguide spatial modes. The optical system directs a plurality of the components of the radiation beam belonging to a common radiation beam spatial mode and having different frequencies onto the waveguide in such a way that each of the plurality of components couples to a different set of the waveguide spatial modes, each set comprising one or more of the waveguide spatial modes.
Abstract:
A laser driven light source comprises laser and focusing optics. These produce a beam of radiation focused on a plasma forming zone within a container containing a gas (e.g., Xe). Collection optics collects photons emitted by a plasma maintained by the laser radiation to form a beam of output radiation. Plasma has an elongate form (L>d) and collecting optics is configured to collect photons emerging in the longitudinal direction from the plasma. The brightness of the plasma is increased compared with sources which collect radiation emerging transversely from the plasma. A metrology apparatus using the light source can achieve greater accuracy and/or throughput as a result of the increased brightness. Back reflectors may be provided. Microwave radiation may be used instead of laser radiation to form the plasma.