Abstract:
A method for unloading a substrate from a support table configured to support the substrate, the method including: supplying gas to a gap between a base surface of the support table and the substrate via a plurality of gas flow openings in the support table, wherein during an initial phase of unloading the gas is supplied through at least one gas flow opening in an outer region of the support table and not through any gas flow opening in a central region of the support table radially inward of the outer region, and during a subsequent phase of unloading the gas is supplied through at least one gas flow opening in the outer region and at least one gas flow opening in the central region.
Abstract:
A substrate table for an immersion system having a projection system arranged to project an image onto a substrate and a liquid confinement system configured to confine an immersion liquid to a space between the projection system and the substrate, the substrate table including: a substrate holder configured to hold a substrate; and a current control device arranged to reduce an electric current flowing between the substrate and the substrate holder while the immersion liquid is confined to the space.
Abstract:
A lithographic apparatus includes a support table and a gas extraction system. The gas extraction system is configured to extract gas from a gap between the base surface of the support table and a substrate through at least one gas extraction opening when the substrate is being lowered onto the support table. The lithographic apparatus is configured such that gas is extracted from the gap at a first loading flow rate when the distance between the substrate and the support plane is greater than a threshold distance and gas is extracted from the gap at a second loading flow rate when the distance between the substrate and the support plane is less than the threshold distance, wherein the second loading flow rate is lower than the first loading flow rate.
Abstract:
A substrate support, includes: a substrate support location configured to support a substrate, and a vacuum clamping device configured to clamp the substrate on the substrate support location, wherein the vacuum clamping device includes at least one reduced pressure source to create a reduced pressure, at least one vacuum section connected to the at least one reduced pressure source, wherein the at least one vacuum section is configured to attract the substrate towards the substrate support location, and a control device configured to control a spatial pressure profile along the at least one vacuum section with which the substrate is attracted by the vacuum clamping device, wherein the control device includes a substrate shape data input to receive substrate shape data representing shape data of the substrate to be clamped, and wherein the control device is configured to adapt the spatial pressure profile in dependency of the substrate shape data.
Abstract:
A support table (WT) for a lithographic apparatus, the support table is configured to support a lower surface of a substrate (W). The support table comprises: a base surface (22) configured to be substantially parallel to the lower surface of the substrate supported on the support table, a plurality of burls (20) protruding above the base surface, each of the plurality of burls having a respective distal end and a first height above the base surface, the plurality of burls arranged such that, when the substrate is supported by the support table, the substrate is supported by the respective distal end of each of the plurality of the burls, and a plurality of elongate raised protrusions (45) protruding above the base surface, each of the elongate raised protrusions having a second height above the base surface, wherein the second height is less than the first height. The base surface comprises a plurality of regions within each of which some of the elongate raised protrusions are located. All of the elongate raised protrusions located within each region have substantially the same direction of elongation such that they are substantially parallel to each other so as to form between the elongate raised protrusions at least one gas flow path substantially parallel to the elongate raised protrusions.
Abstract:
A treatment tool for reconditioning the top surfaces of a plurality of projections of a substrate support in a lithographic tool. The treatment tool includes a reconditioning surface which is rough relative to smoothed top surfaces of the projections and which reconditioning surface has material harder than that of the material of the top surfaces of the projections. A reconditioning method involves causing an interaction between the reconditioning surface of the treatment tool and the top surfaces of the projections of the substrate support, so as to leave these top surfaces rougher than they were prior to the interaction.
Abstract:
A substrate holder for use in a lithographic apparatus and configured to support a substrate, the substrate holder including a main body having a main body surface, a plurality of main burls projecting from the main body surface, wherein each main burl has a distal end surface configured to support the substrate, a first seal member projecting from the main body surface and having an upper surface, the first seal member surrounding the plurality of main burls and configured to restrict the passage of liquid between the substrate and the main body surface radially inward past the first seal member; and a plurality of minor burls projecting from the upper surface of the first seal member, wherein each minor burl has a distal end surface configured to support the substrate.
Abstract:
A substrate holder, a method of manufacturing of the substrate holder and a lithographic apparatus having the substrate holder. In one arrangement, a substrate holder is for use in a lithographic apparatus. The substrate holder is configured to support a lower surface of a substrate. The substrate holder has a main body, a plurality of burls and a coating. The main body has a substrate-facing face. The plurality of burls protrudes from the substrate-facing face. Each burl has a distal end configured to engage with the substrate. The distal ends are configured for supporting the substrate. The coating is on the substrate-facing face between the burls. Between the burls the substrate-facing face has an arrangement of areas. Adjacent areas are separated by a step-change in distance below the support plane. Each step-change is greater than a thickness of the coating.
Abstract:
A support apparatus configured to support an object, the support apparatus includes a support body including an object holder to hold an object; an opening in the support body adjacent to an edge of the object holder; a channel in fluid communication with the opening via each of a plurality of passageways in the support body; and a passageway liner mounted in at least one of the plurality of passageways, the passageway liner being thermally insulating to substantially thermally decouple the support body from fluid in the at least one of the plurality of passageways.
Abstract:
A substrate holder for use in a lithographic apparatus and configured to support a substrate, the substrate holder including: a main body having a main body surface; and a plurality of burls projecting from the main body surface; wherein each burl has a distal end configured to engage with the substrate; the distal ends of the burls substantially conform to a support plane whereby a substrate can be supported in a substantially flat state on the burls; a frictional force between the distal end of each burl and a substrate engaged therewith arises in a direction parallel to the support plane in the event of a relative movement of the substrate and substrate holder in the direction; and distal end surfaces of the burls are provided with a release structure configured so that the frictional force is less than would arise in the absence of the release structure.