摘要:
The invention relates to a so-called punch-through diode with a mesa (12) comprising, in succession, a first (1), a second (2) and a third (3) semiconductor region (1) of, respectively, a first, a second and the first conductivity type, which punch-through diode is provided with two connection conductors (5, 6). During operation of said diode, a voltage is applied such that the second semiconductor region (2) is fully depleted. A drawback of the known punch-through diode resides in that the current flow is too large at lower voltages. In a punch-through diode according to the invention, a part (2A, 2B) of the second semiconductor region (2), which, viewed in projection, borders on the edge of the mesa (12), is provided with a larger flux of doping atoms of the second conductivity type than the remainder (2A) of the second semiconductor region (2). It has been found that the high current at a low voltage of the known diode is caused by the fact that the second semiconductor region (2) at the edge of the mesa (12) is depleted before the remainder of the second semiconductor region (2). By locally increasing the flux of doping atoms, the depletion at the edge is delayed as compared to the remainder of the second semiconductor region. Preferably, this result is obtained by locally increasing the thickness of the second semiconductor region (2). In this manner, a substantial current reduction at lower voltages is obtained in the diode in accordance with the invention.
摘要:
The invention relates to a semiconductor device having a rectifying junction (5) which is situated between two (semiconductor) regions (1, 2) of an opposite conductivity type. The second region (2), which includes silicon, is thicker and has a smaller doping concentration than the first region (1) which includes a sub-region comprising a mixed crystal of silicon and germanium. The two regions (1, 2) are each provided with a connection conductor (3, 4). Such a device can very suitably be used as a switching element, in particular as a switching element for a high voltage and/or high power. In the known device, the silicon-germanium mixed crystal is relaxed, leading to the formation of misfit dislocations. These serve to reduce the service life of the minority charge carriers, thus enabling the device to be switched very rapidly. In a device in accordance with the invention, the entire first region (1) comprises a mixed crystal of silicon and germanium, and the germanium content and the thickness of the first region (1) are selected so that the voltage built up in the semiconductor device remains below the level at which misfit dislocations develop. Surprisingly, it has been found that such a device can also be switched very rapidly, even more rapidly than the known device. The absence of misfit dislocations has an additional advantage, namely that the device is very reliable. Misfit dislocations do not develop if the product of said relative deviation in the lattice constant and the thickness of the first region is smaller than or equal to 40 nm %. A safe upper limit for said product is 30 nm %.
摘要:
A semiconductor device with a tunnel diode (23) is particularly suitable for various applications. Such a device comprises two mutually adjoining semiconductor regions (2, 3) of opposed conductivity types and having doping concentrations which are so high that breakdown between them leads to conduction by means of tunnelling. A disadvantage of the known device is that the current-voltage characteristic is not yet steep enough for some applications. In a device according to the invention, the portions (2A, 3A) of the semiconductor regions (2, 3) adjoining the junction (23) comprise a mixed crystal of silicon and germanium. It is surprisingly found that the doping concentration of both phosphorus and boron are substantially increased, given the same amount of dopants being offered as during the formation of the remainder of the regions (2, 3). The tunnelling efficiency is substantially improved as a result of this, and also because of the reduced bandgap of said portions (2A, 3A), and the device according to the invention has a much steeper current-voltage characteristic both in the forward and in the reverse direction. This opens perspectives for inter alia an attractive application where the tunnelling pn junction (23) is used as a transition between two conventional diodes, for example pn or pin diodes, which are used one stacked on the other and which can be formed in a single epitaxial growing process thanks to the invention. The portions (2A, 3A) adjoining the tunnelling junction (22) are preferably 5 to 30 nm thick and comprise between 10 and 50 at % germanium. The doping concentration may be 6×1019 or even more than 1020 at/cm3. The invention further relates to a simple method of manufacturing a device according to the invention. This is preferably done at a temperature of between 550° C. and 800° C.
摘要:
A semiconductor device with a tunnel diode comprises two mutually adjoining semiconductor regions (2, 3) of opposed conductivity types having high enough doping concentrations to provide a tunneling junction. Portions (2A, 3A) of the semiconductor regions adjoining the junction comprise a mixed crystal of silicon and germanium. The doping concentration of both phosphorus and boron are substantially increased, given the same amount of dopants being offered as during the formation of the remainder of the regions. The tunneling efficiency is substantially improved, and also because of the reduced bandgap of said portions (2A, 3A). A much steeper current-voltage characteristic both in the forward and in the reverse direction is achieved. Thus, the tunneling pn junction can be used as a transition between two conventional diodes which are stacked one on the other and formed in a single epitaxial growing process. The doping concentration may be 6×1019 or even more than 1020 at/cm3. A simple method of manufacturing such a device is preferably done at a temperature between 550° C. and 800° C.
摘要:
A semiconductor body (1) is provided having a first semiconductor region (3) of one conductivity type separated from a first major surface (5a) by a second semiconductor region (5) of the opposite conductivity type. A trench (7) is etched through the second semiconductor region (5) to an etch stop layer (4) provided in the region of the pn junction between the first (3) and second (5) regions, by using an etching process which enables the etching process to be stopped at the etch stop layer. A gate (8, 9) is provided within the trench (7). A source (12) separated from the first region (3) by the second region (5) is formed adjacent the trench so that a conduction channel area (50) of the second region (5) adjacent the trench provides a conduction path between the source and first regions which is controllable by the gate.
摘要:
Devices with Schottky junctions are manufactured in that a semiconductor body with a substrate is provided with a first, for example n-type semiconductor region in the form of an epitaxial layer. A Schottky metal is locally provided thereon. A second semiconductor region is advantageously formed directly below the Schottky metal, with the purpose of adjusting the level of the Schottky barrier. Around this, a third semiconductor region is formed in the first region at at least two sides, which third region is then of the p-conductivity type and, when it entirely surrounds the second region, forms a so-called guard ring. A disadvantage of the above known method is that the devices obtained thereby have a (forward) current-voltage characteristic which is not very well controllable and reproducible. This hampers mass manufacture. To counteract this disadvantage, a method according to the invention provides the formation of the second semiconductor region by means of low-temperature gas phase epitaxy, such that it has the first or the second conductivity type, and the third region is formed by means of ion implantation, the second semiconductor region being formed after the third region has been formed. Devices are obtained thereby whose current-voltage characteristics can be adjusted over a wide range with very good reproducibility and well controlled. The second semiconductor region may be provided over the entire surface or selectively within the third region only.
摘要:
A method is provided for forming in a semiconductive conjugated polymer at least first and second legions having different optical properties. The method comprises: forming a layer of a precursor polymer and permitting the first region to come into contact with a reactant, such as an acid, and heat while permitting the second region to come into contact with a lower concentration of the reactant. The reactant affects the conversion conditions of the precursor polymer in such a way as to control the optical properties of at least the first region so that the optical properties of the first region are different from those of the second region. The precursor polymer may comprise a poly(arylene-1, 2-ethanediyl) polymer, at least some of the ethane groups of which include a modifier group whose susceptibility to elimination is increased in the presence of the reactant.
摘要:
A semiconductor device has a first region (10) and a second region (20), gate trenches (50) being formed in paid first and second regions including insulated gates to control conduction between source regions (42) and a common drain region (40) through a body region separated into first (34) and second (36) body regions. Isolation between the first and second regions is provided in a simple way by providing a gap between the first and second body regions (34,36) formed by eg. at least one trench (52) or a part of the drain region.
摘要:
A trench-gate MOSFET or ACCUFET has its gate (21) in a first trench (20) that extends through a channel-accommodating body region (15) to a drain region (14). Within the transistor cells, a second trench (40) comprising deposited highly-doped semiconductor material (41) extends to the drain region (14). This highly-doped material (41) is of opposite conductivity type to the drain region (14) and, together with a possible out-diffusion profile (42), forms a localized region (41, 42) that is separated from the first trench (20) by the body region 15. A source electrode (23) contacts the source region (13) and the whole top area of the localized region (41, 42). In a MOSFET, the localized region (41, 42) provides protection against turning on of the cell's parasitic bipolar transistor. In an ACCUFET (FIG. 9), the localized region (41, 42) depletes the channel-accommodating body region (15A). In both devices the localized region (41, 42) is well-defined and can be narrow to enable a small transistor cell size. Furthermore, before filling the second trench (40) with its semiconductor material (41), the drain region (14) can be readily provided with an avalanche-breakdown region (64) at the bottom of the second trench (40), for example by implanting dopant ions (60) of the same conductivity type as the drain region (14). This avalanche-breakdown region (64) improves the ruggedness of the device. It can also aid current spreading (66) in the drain region (14) in the conductive state of the transistor.
摘要:
The invention relates to a write-once read-many memory element (1), or an assembly thereof, which comprises a substrate on which electrodes are provided and between which a layer is sandwiched, which memory element includes a conjugated polymer or oligomer as well as a dopant. This memory element can be written by temporarily applying a sufficiently high voltage to the electrodes so that the electroconductivity of the layer is permanently reduced.