Abstract:
A method, circuit and apparatus for detecting capacitance on a droplet actuator, inter alia, for determining the presence, partial presence or absence of a droplet at an electrode on a droplet actuator by: (a) providing a droplet actuator comprising: (i) a substrate comprising electrodes arranged on the substrate for conducting droplet operations on a surface of the substrate; (ii) a capacitance detection circuit for detecting capacitance at the droplet operations surface at one or more of the electrodes; (b) detecting capacitance at the droplet operations surface at one or more of the electrodes; and (c) determining from the capacitance the presence, partial presence or absence of a droplet at the droplet operations surface at the electrode.
Abstract:
A method, circuit and apparatus for detecting capacitance on a droplet actuator, inter alia, for determining the presence, partial presence or absence of a droplet at an electrode on a droplet actuator by: (a) providing a droplet actuator comprising: (i) a substrate comprising electrodes arranged on the substrate for conducting droplet operations on a surface of the substrate; (ii) a capacitance detection circuit for detecting capacitance at the droplet operations surface at one or more of the electrodes; (b) detecting capacitance at the droplet operations surface at one or more of the electrodes; and (c) determining from the capacitance the presence, partial presence or absence of a droplet at the droplet operations surface at the electrode.
Abstract:
The present invention provides modified droplet actuator systems, software, and software-executed methods for use in droplet actuator operation and droplet actuator systems that are configured and programmed to execute such software. The invention provides a computer readable medium storing processor executable code for performing a method, the method comprising receiving a selection of a function to be performed by a droplet actuator, associating the function to a predefined electrode element, associating the predefined electrode element to a grouping of one or more electrodes that perform the function, and adding the grouping of one or more electrodes to an electronic layout of the droplet actuator.
Abstract:
Methods comprising measuring the impedance of the electrode produced by the excitation signal, wherein the impedance indicates presence of liquid at the electrode are disclosed. Computer readable mediums storing processor executable instructions for performing the method, and systems are also disclosed. The systems comprise a processor, memory and code stored in the memory that when executed cause the processor at least to: receive an output voltage signal, superimpose an excitation signal onto the output voltage signal to produce a superimposed signal, connect the superimposed signal to an electrode in a droplet actuator, suppress the output voltage signal, when detecting an impedance of the electrode, and measure the impedance of the electrode produced by the excitation signal, wherein the impedance indicates presence of liquid at the electrode.
Abstract:
A method, circuit and apparatus for detecting capacitance on a droplet actuator, inter alia, for determining the presence, partial presence or absence of a droplet at an electrode on a droplet actuator by: (a) providing a droplet actuator comprising: (i) a substrate comprising electrodes arranged on the substrate for conducting droplet operations on a surface of the substrate; (ii) a capacitance detection circuit for detecting capacitance at the droplet operations surface at one or more of the electrodes; (b) detecting capacitance at the droplet operations surface at one or more of the electrodes; and (c) determining from the capacitance the presence, partial presence or absence of a droplet at the droplet operations surface at the electrode.
Abstract:
A method, circuit and apparatus for detecting capacitance on a droplet actuator, inter alia, for determining the presence, partial presence or absence of a droplet at an electrode on a droplet actuator by: (a) providing a droplet actuator comprising: (i) a substrate comprising electrodes arranged on the substrate for conducting droplet operations on a surface of the substrate; (ii) a capacitance detection circuit for detecting capacitance at the droplet operations surface at one or more of the electrodes; (b) detecting capacitance at the droplet operations surface at one or more of the electrodes; and (c) determining from the capacitance the presence, partial presence or absence of a droplet at the droplet operations surface at the electrode.
Abstract:
Methods comprising measuring the impedance of the electrode produced by the excitation signal, wherein the impedance indicates presence of liquid at the electrode are disclosed. Computer readable mediums storing processor executable instructions for performing the method, and systems are also disclosed. The systems comprise a processor, memory and code stored in the memory that when executed cause the processor at least to: receive an output voltage signal, superimpose an excitation signal onto the output voltage signal to produce a superimposed signal, connect the superimposed signal to an electrode in a droplet actuator, suppress the output voltage signal, when detecting an impedance of the electrode, and measure the impedance of the electrode produced by the excitation signal, wherein the impedance indicates presence of liquid at the electrode.