Abstract:
Provided herein is a method comprising: (a) obtaining a mixture of multiple sets of oligonucleotides, wherein the oligonucleotides within each set each comprise a terminal indexer sequence and can be assembled to produce a synthon; and (b) hybridizing the oligonucleotide mixture to an array, thereby spatially-separating the different sets of oligonucleotides from one another. In some embodiments the method may comprise (c) contacting the array with a solution, thereby producing, for each feature bound by the oligonucleotides, a discrete droplet comprising the feature and, optionally, placing an immiscible liquid over the droplets, thereby producing, for each feature bound by the oligonucleotides, a discrete reaction chamber defined by a droplet. The method may further comprise incubating the array under conditions by which a synthon is assembled in each of the reaction chambers. Other embodiments are also provided.
Abstract:
Provided herein is a method for producing a population of oligonucleotides that has reduced synthesis errors. In certain embodiments, the method comprises: a) obtaining an initial population of hairpin oligonucleotide molecules that each comprise a double-stranded stem region and a loop region; b) contacting the double-stranded region of the hairpin oligonucleotide molecules with a mismatch binding protein; and c) eliminating any molecules that bind to the mismatch binding protein, thereby producing a population of oligonucleotides that has reduced synthesis errors. A kit and a composition for performing the method are also provided.
Abstract:
The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
Abstract:
The present invention relates to libraries of phosphopeptide-encoding oligonucleotides and methods of preparing such libraries. The present invention also relates to methods of detecting, visualizing, or screening for phosphorylation-dependent protein-protein interactions using recombinant phosphopeptides and/or phosphopeptide-encoding oligonucleotides. The present invention also relates to sets or kits of oligonucleotides having regions that encode phosphopeptides.
Abstract:
The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
Abstract:
The present invention relates to guide RNAs having chemical modifications and their use in CRISPR-Cas systems. The chemically modified guide RNAs have enhanced specificity for target polynucleotide sequences. The present invention also relates to methods of using chemically modified guide RNAs for cleaving or nicking polynucleotides, and for high specificity genome editing.
Abstract:
The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
Abstract:
The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
Abstract:
Provided herein, among other things, is a method comprising: (a) obtaining a mixture of multiple sets of oligonucleotides, wherein the oligonucleotides within each set each comprise a terminal indexer sequence can be assembled to produce a synthon; and (b) hybridizing the oligonucleotide mixture to an array, thereby spatially-separating the different sets of oligonucleotides from one another. Other embodiments are also provided.