Abstract:
The present disclosure is directed to an improved method for distinguishing tissue from an embedding medium, such as paraffin in a formalin-fixed paraffin-embedded sample. The method involves the use of fluorescence of naturally-occurring species in tissue to determine the location of the tissue in the embedded sample. An embedded sample is generally excited by light of a selected wavelength, and the fluorescence emission at an emitted wavelength is used to locate the boundary or location of the tissue in the embedded sample.
Abstract:
Described herein is an adapter comprising a population of first oligonucleotides, a second oligonucleotide and a third oligonucleotide, wherein the first oligonucleotides, the second oligonucleotide and the third oligonucleotide are hybridized together to produce a complex that comprises: (i) a first end comprising a transposase recognition sequence, (ii) a central single-stranded region of variable sequence and (iii) a second end comprising sequences that are non-complementary. A method, as well as a kit for practicing the method, are also provided.
Abstract:
A method for making an asymmetrically-tagged sequencing library is provided. In some embodiments, the method may comprise: obtaining a symmetrically-tagged library of cDNA or genomic DNA fragments, hybridizing a tailed first primer to the 3′ sequence tag of the library and extending the same to produce primer extension products, and amplifying the primer extension products using a prior of tailed primers to produce asymmetrically-tagged library.
Abstract:
Provided herein is a method comprising: (a) obtaining a mixture of multiple sets of oligonucleotides, wherein the oligonucleotides within each set each comprise a terminal indexer sequence and can be assembled to produce a synthon; and (b) hybridizing the oligonucleotide mixture to an array, thereby spatially-separating the different sets of oligonucleotides from one another. In some embodiments the method may comprise (c) contacting the array with a solution, thereby producing, for each feature bound by the oligonucleotides, a discrete droplet comprising the feature and, optionally, placing an immiscible liquid over the droplets, thereby producing, for each feature bound by the oligonucleotides, a discrete reaction chamber defined by a droplet. The method may further comprise incubating the array under conditions by which a synthon is assembled in each of the reaction chambers. Other embodiments are also provided.
Abstract:
This invention relates to apparatus and methods for transferring a tissue section to a slide. The invention also relates to automated systems and methods for transferring a tissue section onto a slide using a bath at ambient temperature and for smoothly mounting a tissue section on a slide.
Abstract:
Provided herein is a proximity assay that, in certain embodiments, involves: (a) hybridizing a first oligonucleotide and a second oligonucleotide with a target nucleic acid, wherein the first oligonucleotide comprises: i. a region that is complementary to a first sequence in the target nucleic acid and ii. a barcode sequence; and the second oligonucleotide comprises i. a region that is complementary to a second region in the target and ii. the complement of the barcode sequence; and (b) detecting hybridization between the barcode sequence and the complement of the barcode sequence, wherein hybridization between the barcode sequence and the complement of the barcode sequence indicates that the first and second target sequences are proximal to one another in the sample.
Abstract:
Described herein is an adapter comprising a population of first oligonucleotides, a second oligonucleotide and a third oligonucleotide, wherein the first oligonucleotides, the second oligonucleotide and the third oligonucleotide are hybridized together to produce a complex that comprises: (i) a first end comprising a transposase recognition sequence, (ii) a central single-stranded region of variable sequence and (iii) a second end comprising sequences that are non-complementary. A method, as well as a kit for practicing the method, are also provided.
Abstract:
The present disclosure is directed to an improved method for distinguishing tissue from an embedding medium, such as paraffin in a formalin-fixed paraffin-embedded sample. The method involves the use of fluorescence of naturally-occurring species in tissue to determine the location of the tissue in the embedded sample. An embedded sample is generally excited by light of a selected wavelength, and the fluorescence emission at an emitted wavelength is used to locate the boundary or location of the tissue in the embedded sample.
Abstract:
The present disclosure is directed to an improved method for distinguishing tissue from an embedding medium, such as paraffin in a formalin-fixed paraffin-embedded sample. The method involves the use of fluorescence of naturally-occurring species in tissue to determine the location of the tissue in the embedded sample. An embedded sample is generally excited by light of a selected wavelength, and the fluorescence emission at an emitted wavelength is used to locate the boundary or location of the tissue in the embedded sample.
Abstract:
The present disclosure is directed to an improved method for distinguishing tissue from an embedding medium, such as paraffin in a formalin-fixed paraffin-embedded sample. The method involves the use of fluorescence of naturally-occurring species in tissue to determine the location of the tissue in the embedded sample. An embedded sample is generally excited by light of a selected wavelength, and the fluorescence emission at an emitted wavelength is used to locate the boundary or location of the tissue in the embedded sample.