摘要:
An object of the invention is to reduce 1/f noise and white noise at the same time by integrally reducing noise of an MR sensor and noise of an operation circuit part. A magnetoresistive sensor according to the invention includes a plurality of magnetoresistive sensor parts each having a bridge circuit in which four magnetoresistive elements are connected, and outputs of the respective magnetoresistive sensor parts are connected in parallel to one another to an input of an amplifier circuit (see FIG. 2).
摘要:
The disclosed magnetic immunoassay device, which performs magnetic immunoassays using antigen-antibody reactions, can perform speedy immunoassays without bound/free separation in the test samples. The device is also practical, being capable of stable magnetism measurement without magnetic shielding. The disclosed magnetic immunoassay device is provided with: an excitation coil that uses an AC magnetic field to magnetize a test sample containing a magnetic marker; a magnetism sensor that measures magnetism in the test sample and outputs a magnetism signal; and a displacement sensor for detecting changes in the distance between the test sample and the magnetism sensor. By optimally setting the bandwidth of a lock-in amplifier, which detects changes in the phase of the magnetism signal outputted by the magnetism sensor, and the rotational speed produced by a drive system, which moves the test sample at low speeds, the impact of environment magnetic noise is reduced, and correcting the magnetism signal using distance information obtained from the displacement sensor allows stable magnetism measurement.
摘要:
In order to provide a magnetic field measuring apparatus facilitating the pressure control in a gas cell, or capable of inspecting the internal pressure of the gas cell without using any special process, the magnetic field measuring apparatus is configured such that a process layer of the magnetic field measuring apparatus has such a structure that includes a first hollow portion and a second hollow portion provided opposed to first hollow portion with a first isolation wall interposed therebetween. Alternatively, a method for manufacturing the magnetic field measuring apparatus includes breaking the first isolation wall after generating alkali metal (FIG. 17 and FIG. 20).
摘要:
A living body inspection apparatus includes: a first detecting unit detecting a displacement of two positions in a lateral direction of a subject's larynx; a second detecting unit detecting a swallowing sound of the subject; a displaying unit displaying a waveform regarding the displacement of the two positions formed using information from the first detecting unit and a waveform regarding the swallowing sound formed using information from the second detecting unit; a processor instructing the displaying unit; and a flexible holding member including a pair of sensor holding members having flexibility and provided with the first and second detecting units at one ends, and a mounting member integrally formed with the pair of sensor holding members at other ends to hold the sensor holding members, the other ends being made open so that the mounting member is mounted on and held by the subject's larynx.
摘要:
A compression depth calculation system is configured to calculate the compression depth which is a magnitude of depression of the compressed object generated by the compression and includes a measuring apparatus to be mounted on the object, and a compression depth calculating apparatus is configured to calculate the compression depth on the basis of information from the measuring apparatus. The compression depth calculation apparatus calculates a coefficient of transformation on the basis of a second-order differential waveform created for the information acquired from a magnetic sensor and acceleration information acquired from an acceleration sensor, creates a displacement waveform of a compressed portion by multiplying the acquired information by the coefficient of transformation, and calculates the compression depth on the basis of the displacement waveform.
摘要:
For measuring hardness of an object, a measurement apparatus is pushed against the object and a degree of hardness calculation system calculates hardness based on information from the measurement apparatus. The measurement apparatus includes an acceleration sensor which outputs first information of acceleration of a contact area of the measurement apparatus, and a second sensor, such as a magnetic sensor or a pressure sensor, which outputs second information based on pressure applied to the contact area. The degree of hardness calculation system generates a second-derivative waveform by twice differentiating a waveform based on the output of the second sensor, compares the second-derivative waveform and the information of acceleration from the acceleration sensor, and calculates hardness of the object based on the comparison result.
摘要:
In order to provide a magnetic field measuring apparatus facilitating the pressure control in a gas cell, or capable of inspecting the internal pressure of the gas cell without using any special process, the magnetic field measuring apparatus is configured such that a process layer of the magnetic field measuring apparatus has such a structure that includes a first hollow portion and a second hollow portion provided opposed to first hollow portion with a first isolation wall interposed therebetween. Alternatively, a method for manufacturing the magnetic field measuring apparatus includes breaking the first isolation wall after generating alkali metal (FIG. 17 and FIG. 20).
摘要:
It is an object to calculate a compression depth easily with high degree of accuracy. The present invention provides a compression depth calculation system 1000 configured to calculate the compression depth which is a magnitude of depression of the compressed object generated by the compression and includes a measuring apparatus 1 to be mounted on the object, and a compression depth calculating apparatus 2 configured to calculate the compression depth on the basis of information from the measuring apparatus 1. The compression depth calculation apparatus 2 calculates a coefficient of transformation on the basis of a second-order differential waveform created for the information acquired from a magnetic sensor 19 and acceleration information acquired from an acceleration sensor 13, creates a displacement waveform of a compressed portion by multiplying the acquired information by the coefficient of transformation, and calculates the compression depth on the basis of the displacement waveform.
摘要:
A biomagnetic field measurement apparatus capable of easily bringing the sensor planes close to the head surface of the subject and capable of detecting cerebral magnetic fields of the left brain and the right brain simultaneously with a higher sensitivity is provided by disposing two independent cryostats holding SQUID fluxmeters in the mirror image relation to each other. The two cryostats move vertically and horizontally and rotate while interlocking with each other and maintaining the mirror image relation to each other. A gantry holding the cryostats has a function of suppressing vibration of the cryostats and has a gate shape.
摘要:
There is provided a biomagnetic field measurement apparatus capable of carrying out exact positioning work and highly sensitive signal detection. To bring a sensor surface close to a body surface while the sensor surface and the body surface are kept parallel, a cryostat is constructed so as to be capable of oscillating and expanding and contracting. A gantry is formed by three supports. A first support is a portal support that supports the whole of the gantry. A second support is supported on the first support, and is rotatable with a first direction being the axis. A third support is supported on the second support, and is movable in the axial direction of the cryostat as viewed from the second support. The cryostat is supported on the third support, and moves integrally with the third support.