摘要:
An electrolyte having a structure where a fluorinated hydrophilic segment A represented by -E2-[Rf-E1]m- and a hydrocarbon hydrophobic segment B are alternately bonded to each other through chemical bond and a production process therefor, and an electrolyte membrane, a production process therefor, a catalyst layer and a fuel cell using the same. Rf is a linear or a branched perfluoro chain having one or more carbon atoms, E1, and E2 are each a proton conductive portion represented by Formula —(CONM)i1(CO)i2(SO2NM)i3(SO2)i4— (0≦i1, 0≦i2≦1, 0≦i3, 0≦i4≦1, 0
摘要:
An electrolyte having a structure where a fluorinated hydrophilic segment A represented by -E2-[Rf-E1]m- and a hydrocarbon hydrophobic segment B are alternately bonded to each other through chemical bond and a production process therefor, and an electrolyte membrane, a production process therefor, a catalyst layer and a fuel cell using the same. Rf is a linear or a branched perfluoro chain having one or more carbon atoms, E1, and E2 are each a proton conductive portion represented by Formula —(CONM)i1(CO)i2(SO2NM)i3(SO2)i4— (0≦i1, 0≦i2≦1, 0≦i3, 0≦i4≦1, 0
摘要:
A polymer electrolyte includes a fluorine-containing structure having an alicyclic 1,3-disulfonimide in a principal chain or side chain of the polymer. A battery includes the polymer electrolyte. An imide monomer is able to introduce a fluorine-containing structure having an alicyclic 1,3-disulfonimide into a principal chain or side chain of a polymer through a polymerization reaction or a combination of a polymerization reaction and a fluorination reaction. A manufacturing method for a polymer electrolyte includes a polymerization step of polymerizing a raw material that includes one or two or more types of imide monomers that are able to introduce a fluorine-containing structure having an alicyclic 1,3-disulfonimide into a principal chain or side chain of a polymer through a polymerization reaction or a combination of a polymerization reaction and a fluorination reaction.
摘要:
A polyparaphenylene hydrocarbon electrolyte having a structure represented by a formula (1), a manufacture method therefore, and a polyparaphenylene usable as a raw material for manufacturing the polyparaphenylene hydrocarbon electrolyte, as well as a electrolyte membrane, a catalyst layer and a solid polymer fuel cell that employ the polyparaphenylene hydrocarbon-based electrolyte. In the formula, A is an integer of (1) or greater; B is an integer of 0 or greater; and C is an integer of 1 to 10. X represents a direct bond or an oxygen atom, which is arbitrarily assignable in repetitions. At least one of Y1s represents a proton-conducting site, and the rest of Y1s each represent a hydrogen atom or a proton-conducting site, which is arbitrarily assignable in repetitions. The proton-conducting site is made up of —SO3H, —COOH, —PO3H2 or —SO2NHSO2R (R is an alkyl chain or a perfluoroalkyl chain).
摘要翻译:具有由式(1)表示的结构的聚对亚苯基碳氢化合物电解质,其制造方法和可用作制备聚对亚苯基烃电解质的原料的聚对亚苯基,以及电解质膜,催化剂层和固体聚合物燃料 使用聚对亚苯基烃类电解质的电池。 在该式中,A是(1)或更大的整数; B为0以上的整数; C为1〜10的整数.X表示直接键或氧原子,其可重复任意赋值。 Y 1中的至少一个表示质子传导位点,其余的Y1各自表示氢原子或质子传导位点,其可以重复任意分配。 质子传导位点由-SO 3 H,-COOH,-PO 3 H 2或-SO 2 NHSO 2 R(R为烷基链或全氟烷基链)构成。
摘要:
The membrane electrode assembly 1 has an anode 10, a cathode 20, and an electrolyte membrane 30 disposed between the anode and cathode; the anode and cathode are gas diffusion electrodes; the electrolyte membrane contains a solid electrolyte in which a plurality of pores with mean pore diameters of 1 to 30 nm are formed; and the solid electrolyte has a backbone comprising organic groups having one or more metal atoms, oxygen atoms bonded to the metal atoms, and carbon atoms bonded to the metal atoms or oxygen atoms, and also has functional groups with ion-exchange capabilities that are bonded to the organic groups in the pores.
摘要:
Disclosed herein is a solid polymer electrolyte wherein protons of cation exchange groups contained in a perfluorinated electrolyte are partially replaced by metal ions. The metal ion is at least one metal ion selected from vanadium (V), manganese (Mn), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), iron (Fe), ruthenium (Ru), nickel (Ni), palladium (Pd), platinum (Pt), silver (Ag), cerium (Ce), neodymium (Nd), praseodymium (Pr), samarium (Sm), cobalt (Co), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), and erbium (Er) ions. Further disclosed is a solid polymer fuel cell using the solid polymer electrolyte.
摘要:
A polymer electrolyte of high durability consistent with the present invention is characterized as including a first repeating unit represented by a general formula —{C(Z1)(Z2)-C(Z3)(Z4-SO3H)}— (where Z1, Z2, Z3, and Z4 are respectively F or Rf1, F or Rf2, F or Rf3, and nothing or Rf4; and each of Rf1, to Rf4 is a perfluoroalkyl group in which the carbon number is from 1 to 10) in a polymer chain, and having an equivalent weight of 2500 g/eq or less.
摘要:
Disclosed herein is an ion conductive polymer comprising a unit represented by Formula (1) below: —SO2[N−SO2(M+)]X1- (1) wherein X1 is an integer greater than 1, and M+ is H+ or Li+. Further disclosed is an imide monomer represented by Formula (A) below: Z1-SO2[N−SO2M+]Y-Z2 (A) wherein Y is an integer of 2 or greater, Z1 is OH, F, Cl, Br, I or NZ3Z4 (in which Z3 and Z4 are each independently H, M or SiMe3, and M is a metal element), Z2 is OH, F, Cl, Br, I or NZ3Z4 (in which Z3 and Z4 are each independently H, M or SiMe3, and M is a metal element), and M+ is H+ or Li+.
摘要:
Disclosed herein is an ion conductive polymer comprising a unit represented by Formula (1) below: —SO2[N−SO2(M+)]X1— (1) wherein X1 is an integer greater than 1, and M+ is H+ or Li+. Further disclosed is an imide monomer represented by Formula (A) below: Z1-SO2[N−SO2M+]Y-Z2 (A) wherein Y is an integer of 2 or greater, Z1 is OH, F, Cl, Br, I or NZ3Z4 (in which Z3 and Z4 are each independently H, M or SiMe3, and M is a metal element), Z2 is OH, F, Cl, Br, I or NZ3Z4 (in which Z3 and Z4 are each independently H, M or SiMe3, and M is a metal element), and M+ is H+ or Li+.
摘要:
The resin composite of this invention comprises an organophilic clay and a polymer. The polymer is formed of two or more polymers at least one of which has a functional group, or the polymer is formed of a copolymer having a functional group. This structure provides the resin composite which can be easily made composite with a wide range of applications, and imparts the optimum physical properties to the composite.