摘要:
The present invention provides a nucleic acid analyzing apparatus which achieves highly accurate analytical ability even in single molecule DNA analysis. The nucleic acid analyzing apparatus detects locations of fluorescent bright spots in image information about light emission, deletes defective bright spots, and thereby creates intensity trace data about proper bright spots.
摘要:
The present invention provides a nucleic acid analyzing apparatus which achieves highly accurate analytical ability even in single molecule DNA analysis. The nucleic acid analyzing apparatus detects locations of fluorescent bright spots in image information about light emission, deletes defective bright spots, and thereby creates intensity trace data about proper bright spots.
摘要:
A microparticle having a probe molecule able to capture a specific nucleic acid group to be analyzed is used to extract only the specific nucleic acid group to be analyzed from a nucleic acid sample and the microparticle is thereafter directly immobilized on a smooth plate, whereby a device for nucleic acid analysis is rapidly prepared. Immobilizing a single capture probe molecule onto an individual microparticle in advance and forming, at regular positions on the smooth substrate, an adhesion pad on which a functional group that binds to the microparticle has been introduced makes it possible to readily and rapidly prepare the device for nucleic analysis, where the nucleic acid sample to be analyzed is arranged molecule by molecule in a lattice shape on the smooth substrate.
摘要:
In the conventional nucleic acid analysis devices and nucleic acid analyzers, there was no technique available for sequencing a single nucleic acid molecule easily and highly efficiently. The present invention enabled a highly efficient single molecule immobilization of nucleic acid with good reproductivity in a short time at a low price by providing small metallic bonding pads at predetermined positions on a support substrate, firmly fixing a hydrophobic linker on the bonding pads, and bonding on to the linker bulky microparticles onto which a single molecule of a nucleic acid sample fragment is immobilized. According to the present invention, in the nucleic acid analysis device which uses a nucleic acid analyzer, the nucleotide read length can be extended and many types of nucleic acid molecule to be analyzed can be analyzed at one time.
摘要:
In a nucleic acid analysis device which detects a fluorescent dye on a nucleic acid sample immobilized on a surface of a substrate by exciting the fluorescent dye with an evanescent wave, the detection of a fluorescence signal with a high SN ratio is realized even for a long nucleic acid sample.The nucleic acid analysis device according to the invention is a nucleic acid analysis device in which a plurality of regions for immobilizing a nucleic acid sample are provided on a surface of a support base and a single molecule of a nucleic acid sample is immobilized on at least one of the regions, and which performs sequence determination by performing an extension reaction of the immobilized nucleic acid sample, wherein the immobilization of the single molecule of the nucleic acid sample on the support base is performed at two or more points.
摘要:
The present invention relates to a method for detecting fusion gene transcripts resulting from chromosomal translocation. Specifically, the method of the present invention comprises allowing at least two or more probes, each of which contains a partial base sequence of exons which sandwich the breakpoint of a fusion gene or complementary base sequence thereof, and each of which immobilized on a support, to hybridize with a sample containing a nucleic acid derived from a fusion gene, thereby allowing the detection of two or more fusion genes at a time.
摘要:
A microparticle having a probe molecule able to capture a specific nucleic acid group to be analyzed is used to extract only the specific nucleic acid group to be analyzed from a nucleic acid sample and the microparticle is thereafter directly immobilized on a smooth plate, whereby a device for nucleic acid analysis is rapidly prepared. Immobilizing a single capture probe molecule onto an individual microparticle in advance and forming, at regular positions on the smooth substrate, an adhesion pad on which a functional group that binds to the microparticle has been introduced makes it possible to readily and rapidly prepare the device for nucleic analysis, where the nucleic acid sample to be analyzed is arranged molecule by molecule in a lattice shape on the smooth substrate.
摘要:
In the conventional nucleic acid analysis devices and nucleic acid analyzers, there was no technique available for sequencing a single nucleic acid molecule easily and highly efficiently. The present invention enabled a highly efficient single molecule immobilization of nucleic acid with good reproductivity in a short time at a low price by providing small metallic bonding pads at predetermined positions on a support substrate, firmly fixing a hydrophobic linker on the bonding pads, and bonding on to the linker bulky microparticles onto which a single molecule of a nucleic acid sample fragment is immobilized. According to the present invention, in the nucleic acid analysis device which uses a nucleic acid analyzer, the nucleotide read length can be extended and many types of nucleic acid molecule to be analyzed can be analyzed at one time.
摘要:
Disclosed is a technique for binding microparticles to patterned bonding pads of a metal (e.g., gold) formed on a support. The microparticles each carry a nucleic acid synthetase or DNA probe immobilized thereon for capturing a nucleic acid sample fragment. The technique involves forming, on a support surface, a film having a thickness equivalent to that of the bonding pads; controlling the size of microparticles with respect to the size of bonding pads; and thereby immobilizing microparticles each bearing a single nucleic acid sample fragment to the bonding pads in a one-to-one manner in a grid form. This allows high-density regular alignment and immobilization of many types of nucleic acid fragment samples on a support and enables high-throughput analysis of nucleic acid samples. Typically, immobilization of microparticles at 1-micrometer intervals easily provides a high density of 106 nucleic acid fragments per square millimeter.
摘要:
An object of the present invention relates to detecting a target substance with high contrast. The invention relates to analysis of a target substance using a light-transmitting substrate and a metal for inducing plasmon resonance, and further using a low refractive index layer with an opening portion, which forms an interface with the substrate, and which has a lower refractive index than the substrate. Light emitted from a substrate side is totally reflected at the interface to irradiate the metal arranged in the opening portion with evanescent light. Light generated from the target substance by plasmon resonance of the evanescent light is detected. According to the invention, the radiation of evanescent light to a material other than the target substance can be reduced, and thereby light emission from the martial other than the target substance, e.g., a molecule floating around the target substance, can be reduced.