摘要:
An apparatus and method for using frequency modulated diffusive photon-density waves propagating through a turbid medium such as tissue for detecting optical properties of objects and for imaging objects within the turbid medium. Frequency modulation enables real time differential measurement of the interaction of different colors with the object when the different colors are chosen such that they react the same with the medium but differently with the object. The method greatly simplifies optical imaging and increases the amount of information which may be obtained about the object.
摘要:
Imaging of a turbid object utilizes interference among the modulation wavefronts of a plurality of modulated light rays propagating through the object by diffusion and having predetermined phases relative to one another. A computer controlled phase and amplitude selecting device, such as a zone plate, is used to modulate light rays at appropriate phases in order to obtain constructive interference only at a predetermined portion of the object, including one or more preselected voxels. The rays reflected from (or diffusively transmitted through) the predetermined portion are received simultaneously at a detector, thus providing simultaneously all the data necessary to describe or image the portion. A single detector element may be used to detect the scattered reflected or transmitted light from the portion and to generate a signal representing the amplitude and phase characteristics for the modulation wavefront, thereby to provide absorption (and other) characteristics descriptive of the portion. An array of detectors may be used to detect the light from a plurality of individual voxels simultaneously and to provide such characteristics for each of the voxels. By dynamically controlling the phase and amplitude selecting device, the voxels selected for imaging are changed without mechanical scanning. Light rays having different frequencies may be modulated to provide complete absorption spectra for an arbitrarily selected portion of the object.
摘要:
A method serves for recording nuclear resonance spectra of test samples having at least three groups of spins. A first group is coupled to a second group, while a third group is uncoupled relative to the second group but has a spectral position, e.g. chemical shift, which is substantially identical only to that of the first group. For obtaining an isolated image of the signal of the first group, one suppresses the signal of the third group. A pulse sequence of three r.f. pulses (10, 13, 22) are irradiated upon the sample in a manner known as such. The second r.f. pulse (13) is applied in such a way that the magnetization of the spins of the first group is transferred to the spins of the second group by polarization transfer. Then, a first magnetic gradient field pulse (17, 23), with dephasing effect for the spins of the said second group, is exerted upon the sample. The third r.f. pulse (22) is adjusted in such a way that the magnetization of the spins of the said second group is retransferred, by polarization re-transfer, to the spins of the first group, which is finally exposed to a second magnetic gradient field pulse (23), being rephasing for the spins of the first group (A).
摘要:
Interferometer apparatus includes a light source, disposed in a light source arm, for emitting light at various wavelengths and a focusing device disposed in an object arm for focusing the emitted light simultaneously into at least two different regions within an object, the focused light being reflected from the object. A reference is provided, including a reflective element, for reflecting light from the light source means and a detector, disposed in a detector arm is provided for measuring different wavelengths of the light reflected from the reference means and the object, in order to obtain a spectroscopic image of the object, displaying both spacial resolution in a lateral direction and a field of view in a depth direction.
摘要:
A method serves for recording spin resonance spectra of test samples having at least three groups of spins. A first group is coupled to a second group, while a third group is uncoupled relative to the second group but has a spectral position, e.g. chemical shift, which is substantially identical only to that of the first group. For obtaining an isolated image of the signal of the first group, one suppresses the signal of the third group. A pulse sequence of three r.f. pulses (10, 13, 17) are irradiated upon the sample in a manner known as such. The second r.f. pulse (13 ) is applied in such a way that the magnetization of the spins of the first group and of the second group is transferred to a state of double-quantum coherence by coherence transfer. Then, a first magnetic gradient field pulse (15) of a predetermined pulse surface (.epsilon..sub.2), with dephasing effect for the double-quantum coherence, is exerted upon the sample. The third r.f. pulse (17) is adjusted in such a way that the double-quantum coherence is retransferred, by coherence re-transfer, to the single-quantum coherence, which is finally exposed to a second magnetic gradient field pulse (19), being rephasing for the spins of the first group (A) and having a pulse surface n times the pulse surface of the magnetic gradient field pulse (15).
摘要:
Low-coherence interferometric apparatus for light-optical scanning of an object (18) with a low-coherence interferometer (6) comprising a low-coherent light source (7), a reference reflector (21) and a detector (25), wherein light emitted by the light source (7) is split into two optical paths (11,12), a first fraction of the light being irradiated as measurement light (16) onto the object and a second fraction of the light being irradiated as reference light (22) upon the reference reflector (21), and wherein, after reflection on the object (18) or the reference reflector (21) respectively, the measurement light (16) and the reference light (22) are combined at a beam junction (10) in such a manner that an interference signal which contains information about the reflection intensity of the measurement light, relative to the respective scan position is generated. In order to enable a very fast scan, a variable wavelength selection device (30) is positioned in the light path of the detection light between the beam junction (10) and the detector (25). A wavelength-dependent selection of the detection light (24) is performed by this device in such a manner that the detector (25) selectively receives preferentially light with wavelengths which correspond to a predetermined sequence of wavenumbers k. For varying the scan position along the scan path (27) different sequences of wavenumbers k can be set.
摘要:
The invention proposes a method for the optimization of the interferometric examination of scattering objects, wherein intensity-modulated light is divided, one beam is directed into an object and the other beam is directed to a reference mirror, the reflected light is guided to a detector module, where it is converted to an interference signal and this signal is evaluated. The method is characterized by the fact that light of at least two different central wavelengths is irradiated and the converted interference signals of both central wavelengths are phase-shifted in order to compensate for their expected dispersion.
摘要:
In an optical imaging apparatus for the investigation of strongly scattering media, in particular biological tissue samples, with at least one-dimensional position resolution in a depth direction of a measuring object, with a radiation source for radiating low coherence light, with a device for splitting the low coherence light into two partial beams, of which one is guided in an object arm to the measured object and the other in a reference arm to a reflecting element, and with a detector configuration to which the partial beams reflected from the reflecting element in the reference arm and from the measured object in the object arm can be guided, brought into interference with another, and detected, the detector configuration exhibits a spatial extent transverse to the incident direction of both partial beams on the detector configuration along which light signals can be recorded in a position sensitive and simultaneous fashion and both partial beams in the object arm and in the reference arm are so guided that a spatial interference pattern occurs along the lateral extent of the detector configuration, whereby the reflecting element in the reference arm exhibits only static parts which, in any event, are non-mechanically moving. In this fashion a simple and economical as well as especially mechanically stable reflectometer apparatus is achieved with which a rapid sequence of image recordings is possible.
摘要:
Optical imaging of an object utilizes a plurality of amplitude modulated light rays propagating through the object, either sequentially or simultaneously, for detection by a single photodetector. The light rays may propagate geometrically (i.e., directly) or diffusively. Each of the rays is encoded with a different phase to provide sufficient information for decoding the light intensity detected by the photodetector. The rays may be applied simultaneously in an array, in which case different carrier frequencies as well as different phases are applied to the different rays by any of a number of modulators. Alternatively, the rays may be individually applied to the object in a sequence of phase encoded rays. In either case, the single photodetector receives sufficient information to image each of the voxels of interest in the object being imaged. Information may be obtained for different voxels selected for imaging without mechanical scanning.
摘要:
An apparatus produces complete stereoscopic images of a three-dimensional object. It comprises an image transmitter (13) on which are shown one after the other in time two-dimensional images (14) corresponding to sections lying one behind the other in space. In addition, the element (18) is provided which is disposed between the image transmitter (13) and an observer (36), said element being synchronously controlled by the image transmitter (13) and changing the spatial positioning of the image (14) between image transmitter (13) and observer (36). Optical means (31, 32) serve to reduce an image (14) shown on the image transmitter (13) in the plane of the element (18) and to re-enlarge it for analysis. The apparatus is particularly suitable for showing tomographic pictures, i.e. for imaging the inside of a living body.