摘要:
Embodiments of the invention relate to an electro-optic device comprising a first region of silicon semiconductor material and a second region of III-V semiconductor material. A waveguide of the optical device is formed in part by a ridge in the second region. An optical mode of the waveguide is laterally confined by the ridge of the second region and vertically confined by a vertical boundary included in the first region. The ridge structure further serves as a current confinement structure over the active region of the electro-optic device, eliminating the need for implantation or other structures that are known to present reliability problems during manufacturing. The lack of “voids” and implants in electro-optic devices according to embodiments of the invention leads to better device reliability, process repeatability and improved mechanical strength.
摘要:
Embodiments of the invention relate to an electro-optic device comprising a first region of silicon semiconductor material and a second region of III-V semiconductor material. A waveguide of the optical device is formed in part by a ridge in the second region. An optical mode of the waveguide is laterally confined by the ridge of the second region and vertically confined by a vertical boundary included in the first region. The ridge structure further serves as a current confinement structure over the active region of the electro-optic device, eliminating the need for implantation or other structures that are known to present reliability problems during manufacturing. The lack of “voids” and implants in electro-optic devices according to embodiments of the invention leads to better device reliability, process repeatability and improved mechanical strength.
摘要:
Embodiments of the invention relate to an electro-optic device comprising a first region of silicon semiconductor material and a second region of III-V semiconductor material. A waveguide of the optical device is formed in part by a ridge in the second region. An optical mode of the waveguide is laterally confined by the ridge of the second region and vertically confined by a vertical boundary included in the first region. The ridge structure further serves as a current confinement structure over the active region of the electro-optic device, eliminating the need for implantation or other structures that are known to present reliability problems during manufacturing. The lack of “voids” and implants in electro-optic devices according to embodiments of the invention leads to better device reliability, process repeatability and improved mechanical strength.
摘要:
Apparatuses and methods for making and using laser-assisted magnetic recording devices. A slider for use in a magnetic recording apparatus in accordance with one or more embodiments of the present invention comprises a magnetic recording element having a first pole and a second pole, a magnetic reader, and a laser resonator integrally formed on said slider, having an optical emission point of said resonator positioned between the first pole and the second pole of the magnetic recording element; wherein the laser resonator comprises a semiconductor gain media positioned between a first reflector and a near field optical element having a nonzero optical reflection to the semiconductor gain media.
摘要:
Embodiments of the invention describe heterogeneous photonic integrated circuits (PIC) wherein a first silicon region is separated from the heterogeneous semiconductor material by a first distance, and a second silicon region is separated from the heterogeneous semiconductor material by a second distance greater than the first distance.Thus embodiments of the invention may be described as, in heterogeneous regions of a heterogeneous PIC, silicon waveguides using multiple heights of the silicon waveguide, or other structures with multiple offset heights between silicon and heterogeneous materials (as described herein).
摘要:
A tunable laser comprised of a gain section for creating a light beam by spontaneous emission over a bandwidth, a phase section for controlling the light beam around a center frequency of the bandwidth, a cavity for guiding and reflecting the light beam, a front mirror bounding an end of the cavity, and a back mirror bounding an opposite end of the cavity. The back mirror has a &kgr;effB approximately equal to &agr;Tune, where &kgr;effB is an effective coupling constant and &agr;Tune is the maximum amount of propagation loss anticipated for an amount of peak tuning required, and a length of the back mirror is made to produce greater than approximately 80% reflectivity.
摘要:
A monolithically-integrated semiconductor optical transmitter that can index tune to any transmission wavelength in a given range, wherein the range is larger than that achievable by the maximum refractive index tuning allowed by the semiconductor material itself (i.e. Δλ/λ>Δn/n). In practice, this tuning range is >15 nm. The transmitter includes a Mach-Zehnder (MZ) modulator monolithically integrated with a widely tunable laser and a semiconductor optical amplifier (SOA). By using an interferometric modulation, the transmitter can dynamically control the chirp in the resulting modulated signal over the wide tuning range of the laser.
摘要:
A tunable laser is disclosed including a gain section for creating a light beam over a bandwidth, a phase section for controlling the light beam around a center frequency of the bandwidth, a waveguide for guiding and reflecting the light beam in a cavity including a relatively low energy bandgap separate-confinement-heterostructure (SCH), a front mirror bounding an end of the cavity and a back mirror bounding an opposite end of the cavity wherein gain is provided by at least one of the group comprising the phase section, the front mirror and the back mirror.
摘要:
The present invention relates to the tailoring the reflectivity spectrum of a sampled-grating distributed Bragg reflector (SGDBR) by applying digital sampling theory to choose the way each reflector is sampled. The resulting mirror covers a larger wavelength span and has peaks with a larger, more uniform, coupling constant (κ) than the mirrors produced using conventional approaches. The improved mirror also retains the benefits of the sample grating approach. Additionally, most of the embodiments are relatively simple to manufacture.
摘要:
The present invention relates to the tailoring the reflectivity spectrum of a SGDBR by applying digital sampling theory to choose the way each reflector is sampled. The resulting mirror covers a larger wavelength span and has peaks with a larger, more uniform, coupling constant (κ) than the mirrors produced using conventional approaches. The improved mirror also retains the benefits of the sample grating approach. Additionally, most of the embodiments are relatively simple to manufacture.