摘要:
A process for the formation of an electrically conductive silver back electrode of a PERC silicon solar cell comprising the steps: (1) providing a silicon wafer having an ARC layer on its front-side and a perforated dielectric passivation layer on its back-side, (2) applying and drying a silver paste to form a silver back electrode pattern on the perforated dielectric passivation layer on the back-side of the silicon wafer, and (3) firing the dried silver paste, whereby the wafer reaches a peak temperature of 700 to 900° C., wherein the silver paste has no or only poor fire-through capability and comprises particulate silver and an organic vehicle.
摘要:
An aluminum paste comprising particulate aluminum, an organic vehicle and glass frit selected from (i) lead-free glass frits with a softening point temperature in the range of 550 to 611° C. and containing 11 to 33 wt.-% of SiO2, >0 to 7 wt.-% of Al2O3 and 2 to 10 wt.-% of B2O3 and (ii) lead-containing glass frits with a softening point temperature in the range of 571 to 636° C. and containing 53 to 57 wt.-% of PbO, 25 to 29 wt.-% of SiO2, 2 to 6 wt.-% of Al2O3 and 6 to 9 wt.-% of B2O3, useful in the production of aluminum back electrodes of PERC silicon solar cells.
摘要翻译:一种包含微粒铝,有机载体和玻璃料的铝糊料,其选自(i)软化点温度在550-611℃范围内并含有11至33重量%SiO 2的无铅玻璃料, > 0〜7重量%的Al 2 O 3和2〜10重量%的B 2 O 3和(ii)软化点温度在571〜636℃范围内的含铅玻璃料,含有53〜57重量% 的PbO,25〜29重量%的SiO 2,2〜6重量%的Al 2 O 3和6〜9重量%的B 2 O 3,可用于生产PERC硅太阳能电池的铝背电极。
摘要:
A process for the formation of an electrically conductive silver back electrode of a PERC silicon solar cell comprising the steps: (1) providing a silicon wafer having an ARC layer on its front-side and a perforated dielectric passivation layer on its back-side, (2) applying and drying a silver paste to form a silver back electrode pattern on the perforated dielectric passivation layer on the back-side of the silicon wafer, and (3) firing the dried silver paste, whereby the wafer reaches a peak temperature of 700 to 900° C., wherein the silver paste has no or only poor fire-through capability and comprises particulate silver and an organic vehicle.
摘要:
An aluminum paste comprising particulate aluminum, an organic vehicle and glass frit selected from (i) lead-free glass frits with a softening point temperature in the range of 550 to 611° C. and containing 11 to 33 wt.-% of SiO2, >0 to 7 wt.-% of Al2O3 and 2 to 10 wt.-% of B2O3 and (ii) lead-containing glass frits with a softening point temperature in the range of 571 to 636° C. and containing 53 to 57 wt.-% of PbO, 25 to 29 wt.-% of SiO2, 2 to 6 wt.-% of Al2O3 and 6 to 9 wt.-% of B2O3, useful in the production of aluminum back electrodes of PERC silicon solar cells.
摘要翻译:一种包含微粒铝,有机载体和玻璃料的铝糊料,其选自(i)软化点温度在550-611℃范围内并含有11至33重量%SiO 2的无铅玻璃料, > 0〜7重量%的Al 2 O 3和2〜10重量%的B 2 O 3和(ii)软化点温度在571〜636℃范围内的含铅玻璃料,含有53〜57重量% 的PbO,25〜29重量%的SiO 2,2〜6重量%的Al 2 O 3和6〜9重量%的B 2 O 3,可用于生产PERC硅太阳能电池的铝背电极。
摘要:
A process for the production of a MWT silicon solar cell comprising the steps: (1) providing an n-type silicon wafer with (i) holes forming vias between the front-side and the back-side of the wafer and (ii) a p-type emitter extending over the entire front-side and the inside of the holes, (2) applying a conductive metal paste to the holes of the silicon wafer to provide at least the inside of the holes with a metallization, (3) drying the applied conductive metal paste, and (4) firing the dried conductive metal paste, whereby the wafer reaches a peak temperature of 700 to 900° C., wherein the conductive metal paste has no or only poor fire-through capability and comprises (a) at least one particulate electrically conductive metal selected from the group consisting of silver, copper and nickel, (b) at least one particulate p-type dopant, and (c) an organic vehicle.
摘要:
A process for the production of a MWT silicon solar cell comprising the steps: (1) providing a p-type silicon wafer with (i) holes forming vias between the front-side and the back-side of the wafer and (ii) an n-type emitter extending over the entire front-side and the inside of the holes, (2) applying a conductive metal paste to the holes of the silicon wafer to provide at least the inside of the holes with a metallization, (3) drying the applied conductive metal paste, and (4) firing the dried conductive metal paste, whereby the wafer reaches a peak temperature of 700 to 900° C., wherein the conductive metal paste has no or only poor fire-through capability and comprises (a) at least one particulate electrically conductive metal selected from the group consisting of silver, copper and nickel and (b) an organic vehicle.
摘要:
A process for the production of a MWT silicon solar cell comprising the steps: (1) providing a p-type silicon wafer with (i) holes forming vias between the front-side and the back-side of the wafer and (ii) an n-type emitter extending over the entire front-side and the inside of the holes, (2) applying a conductive metal paste to the holes of the silicon wafer to provide at least the inside of the holes with a metallization, (3) drying the applied conductive metal paste, and (4) firing the dried conductive metal paste, whereby the wafer reaches a peak temperature of 700 to 900° C., wherein the conductive metal paste has no or only poor fire-through capability and comprises (a) at least one particulate electrically conductive metal selected from the group consisting of silver, copper and nickel and (b) an organic vehicle.
摘要:
A process for the production of a MWT silicon solar cell comprising the steps:(1) providing an n-type silicon wafer with (i) holes forming vias between the front-side and the back-side of the wafer and (ii) a p-type emitter extending over the entire front-side and the inside of the holes, (2) applying a conductive metal paste to the holes of the silicon wafer to provide at least the inside of the holes with a metallization, (3) drying the applied conductive metal paste, and (4) firing the dried conductive metal paste, whereby the wafer reaches a peak temperature of 700 to 900° C., wherein the conductive metal paste has no or only poor fire-through capability and comprises (a) at least one particulate electrically conductive metal selected from the group consisting of silver, copper and nickel, (b) at least one particulate p-type dopant, and (c) an organic vehicle.