摘要:
This invention relates to a high efficiency hybrid solar cell preferably comprised of a static concentrator, a dichroic mirror, a first cell stack comprising two cells, the first cell being a GaInP cell and the second cell being a GaAs cell and a second cell stack comprising three cells, the first cell being a Si cell, the second cell being a GaInAsP cell and the third cell being a GaInAs cell. The dichroic mirror provides a separation of the solar light into two spectral components, one component of light with photons of energy≧Eg that impinges upon the first cell stack and one component of light with photons of energy
摘要:
This invention relates to a high efficiency solar cell with a novel architecture. In one embodiment, the solar cell is comprised of a high energy gap cell stack and a dichroic mirror. The high energy gap cell stack is exposed to solar light before there is any splitting of the solar light into spectral components. Each cell in the high energy gap cell stack absorbs the light with photons of energy greater than or equal to its energy gap, i.e., the blue-green to ultraviolet portion of the solar light. Each cell in the high energy gap cell stack is transparent to and transmits light with photons of energy less than its energy gap. Spectral splitting is then performed by means of the dichroic mirror on the remaining light, i.e., the light transmitted by the high energy gap cell stack.
摘要:
This invention relates to a high efficiency solar cell with a novel architecture. In one embodiment, the solar cell is comprised of a high energy gap cell stack and a dichroic mirror. The high energy gap cell stack is exposed to solar light before there is any splitting of the solar light into spectral components. Each cell in the high energy gap cell stack absorbs the light with photons of energy greater than or equal to its energy gap, i.e., the blue-green to ultraviolet portion of the solar light. Each cell in the high energy gap cell stack is transparent to and transmits light with photons of energy less than its energy gap. Spectral splitting is then performed by means of the dichroic mirror on the remaining light, i.e., the light transmitted by the high energy gap cell stack.
摘要:
This invention relates to an improved high efficiency solar cell. The improvement comprises the addition of one or more silicon cells to surround at least a portion of the active region of the solar cell. Preferably, the silicon cells completely surround the active region of the solar cell. The silicon cells act as scavenger cells to absorb light that would otherwise not be absorbed by other components of the solar cell and to convert that energy to electricity.
摘要:
A thin-film photovoltaic solar cell features a thin polycrystalline silicon active semiconductor formed over a conductive ceramic substrate. Between the substrate and the adjacent active semiconductor layer is a barrier layer which provides for reflection of light, minimizes back surface recombination and prevents contamination of the active semiconductor.
摘要:
A technique for manufacturing durable, reliable solar cells by a continuous process suitable for large-scale manufacture involves, in substance, providing a reel of thin metal foil substrate and forming on the substrate a series of layers operative to form a photovoltaic junction, short prevention blocking layers, contacts and integral encapsulation. The foil substrate is processed as a continuous reel substantially until final testing at which point, if desired, it can be cut into individual cells for deployment. In comparison with a batch process, the continuous technique can reduce manufacturing cost by as much as a factor of two.
摘要:
A polycrystalline film of silicon including silicon grains having an aspect ratio, d/t, of more than 1:1, wherein “d” is the grain diameter and “t” is the grain thickness. The polycrystalline film of silicon can be used to form an electronic device, such as a monolithically integrated solar cell having ohmic contacts formed on opposed surfaces or on the same surface of the film. A plurality of solar cells can be monolithically integrated to provide a solar cell module that includes an electrically insulating substrate and at least two solar cells disposed on the substrate in physical isolation from one another. Methods for manufacturing the film, solar cell and solar cell module are also disclosed. The simplified structure and method allow for substantial cost reduction on a mass-production scale, at least in part due to the high aspect ratio silicon grains in the film.
摘要:
The invention relates to techniques for manufacturing columnar-grained polycrystalline sheets which have particular utility as substrates or wafers for solar cells. The sheet is made by applying granular silicon to a setter material which supports the granular material. The setter material and granular silicon are subjected to a thermal profile all of which promote columnar growth by melting the silicon from the top downwardly. The thermal profile sequentially creates a melt region at the top of the granular silicon and then a growth region where both liquid and a growing polycrystalline sheet layer coexist. An annealing region is created where the temperature of the grown polycrystalline silicon sheet layer is controllably reduced to effect stress relief.
摘要:
High efficiency, thin active-layer silicon solar cells and a process for their fabrications have been provided. The cells are characterized by a capability of employing a low-cost, metallurgical grade silicon for the substrate. The substrate has a silicon dioxide barrier coating with electrical conductivity to the active semiconductor layers provided by a multiplicity of fine holes through the oxide. The holes have silicon therein to afford electrical continuity between the active layers and the silicon of the substrate. The process comprises in situ formation of silicon dioxide on the silicon, formation of the holes in the oxide by photolithography, and etching enabling nucleation and growth of silicon in the holes by epitaxy.
摘要:
A thin-film solar cell is made up of semiconductor layers formed on a substrate. The substrate includes an insulator containing electrically conducting nucleation sites which is interposed between the electrical contact of the substrate and the adjacent semiconductor. The insulator can also be optically transparent. Grain boundaries and voids terminate on the insulator. The solar cell is fabricated by selectively introducing nucleation sites into the insulator layer which is formed on the substrate material, and activating the nucleation sites during growth of the semiconductor layers.