Abstract:
Systems, methods, and computer-readable media are disclosed for improved battery performance. The systems, methods, and computer-readable media described herein may improve user experiences and prolong the battery's life. In an example method described herein, a battery may be placed within a clamp or housing that applies configurable pressure to the battery. In turn, the applied pressure may counter the swelling pressure of the battery and improve the battery's power output, reduce the internal resistance or impedance, and improve the life cycle of the battery.
Abstract:
Various embodiments are directed to flexible battery structures comprising a flexible hinge region. For example, a flexible battery structure may comprise a plurality of battery layers. A first portion of the layers may be continuous across the hinge region and one or more cell regions. A second portion of the layers may be discontinuous at the hinge region.
Abstract:
A power source, designed to be bent or flexed during use, may include a layer of anode material having a length greater than a layer of cathode material to accommodate for movement of the cathode or anode layers during flexing of the power source. An enclosure containing the cathode and anode materials may include an inner protective layer proximate to the cathode and anode layers and a water-impermeable layer external to the inner protective layer. The water-impermeable layer may have a pleated or corrugated configuration that may be extended when the power source is bent under application of a flexure stress, preventing damage or deformation to the water-impermeable layer.
Abstract:
A modular recharging system includes an electronic device that performs diagnostics on a removable battery pack that the electronic device can use to boost the power of its internal battery. Typically, the battery pack will have a larger battery than the internal battery of the device. The electronic device determines whether the battery pack will take a charge before determining whether the battery pack is authorized to assure that an authorization failure is not due to other issues such as a dead battery, an underpowered battery, or a broken connection between devices.
Abstract:
A small capacity battery for powering electronic devices, such as an e-book reader, is provided. This small capacity battery is designed to produce low area-specific resistance, which maintains usable operating voltages even during periods of high current draw. As a result, a lighter and smaller form-factor battery may provide the same battery capacity as a larger and heavier conventional battery. A user may then be provided with a lightweight and small form-factor electronic device that achieves an extended battery life.
Abstract:
Systems, methods, and computer-readable media are disclosed for a flexible battery. The systems, methods, and computer-readable media described herein may improve user experiences and prolong the battery's life. In an example embodiment described herein, a flexible battery may comprise a first battery portion positioned in a grip portion and having a first thickness, and a second battery portion positioned in a second portion having a second thickness that is less than the first thickness, wherein the second battery portion is bendable in the at least one direction, and the first battery portion is rigid.
Abstract:
Various embodiments are directed to a flexible battery structure comprising patterned active layers. An example battery structure comprises a sheet of current collector material, first and second active layers, and a first electrolyte layer. The first active layer may be disposed on the sheet and may comprise a plurality of active material portions and a plurality of slots, where each of the plurality of slots separates a set of at least to adjacent active material portions.
Abstract:
A system and method of using light-energy to communicate with a packaged computing device is described. In some embodiments, an optical detector of the computing device stored in a container receives light energy through a light-transparent window of the container. In some embodiments, the light energy is used to charge a battery of the computing device while the computing device is in the container. In some embodiments, a pre-defined pattern of light pulses is used to transition the computing device between a sleep state and a wake state while the computing device is in the container.
Abstract:
A small capacity battery for powering electronic devices, such as an e-book reader, is provided. This small capacity battery is designed to produce low area-specific resistance, which maintains usable operating voltages even during periods of high current draw. As a result, a lighter and smaller form-factor battery may provide the same battery capacity as a larger and heavier conventional battery. A user may then be provided with a lightweight and small form-factor electronic device that achieves an extended battery life.