摘要:
Methods for fabricating dual bit flash memory devices are provided. Method steps include forming a charge trapping layer overlying a substrate and fabricating two insulating members overlying the charge trapping layer. A polycrystalline silicon layer is provided overlying the charge trapping layer and about sidewalls of the insulating members. Sidewall spacers are formed overlying the polycrystalline silicon layer and about the sidewalls of the insulating members. A portion of the first polycrystalline silicon layer and a first portion of the charge trapping layer are removed. A first insulating layer is conformally deposited overlying the insulating members and the substrate. A gate spacer is formed between the two insulating members and overlying the first insulating layer. The two insulating members are removed and the charge trapping layer is etched to form charge storage nodes. Impurity dopants are implanted into the substrate to form impurity-doped bitline regions within the substrate.
摘要:
Methods for fabricating dual bit flash memory devices are provided. Method steps include forming a charge trapping layer overlying a substrate and fabricating two insulating members overlying the charge trapping layer. A polycrystalline silicon layer is provided overlying the charge trapping layer and about sidewalls of the insulating members. Sidewall spacers are formed overlying the polycrystalline silicon layer and about the sidewalls of the insulating members. A portion of the first polycrystalline silicon layer and a first portion of the charge trapping layer are removed. A first insulating layer is conformally deposited overlying the insulating members and the substrate. A gate spacer is formed between the two insulating members and overlying the first insulating layer. The two insulating members are removed and the charge trapping layer is etched to form charge storage nodes. Impurity dopants are implanted into the substrate to form impurity-doped bitline regions within the substrate.
摘要:
Methods for fabricating dual bit flash memory devices are provided. Method steps include forming a charge trapping layer overlying a substrate and fabricating two insulating members overlying the charge trapping layer. A polycrystalline silicon layer is provided overlying the charge trapping layer and about sidewalls of the insulating members. Sidewall spacers are formed overlying the polycrystalline silicon layer and about the sidewalls of the insulating members. A portion of the first polycrystalline silicon layer and a first portion of the charge trapping layer are removed. A first insulating layer is conformally deposited overlying the insulating members and the substrate. A gate spacer is formed between the two insulating members and overlying the first insulating layer. The two insulating members are removed and the charge trapping layer is etched to form charge storage nodes. Impurity dopants are implanted into the substrate to form impurity-doped bitline regions within the substrate.
摘要:
Methods for fabricating dual bit flash memory devices are provided. Method steps include forming a charge trapping layer overlying a substrate and fabricating two insulating members overlying the charge trapping layer. A polycrystalline silicon layer is provided overlying the charge trapping layer and about sidewalls of the insulating members. Sidewall spacers are formed overlying the polycrystalline silicon layer and about the sidewalls of the insulating members. A portion of the first polycrystalline silicon layer and a first portion of the charge trapping layer are removed. A first insulating layer is conformally deposited overlying the insulating members and the substrate. A gate spacer is formed between the two insulating members and overlying the first insulating layer. The two insulating members are removed and the charge trapping layer is etched to form charge storage nodes. Impurity dopants are implanted into the substrate to form impurity-doped bitline regions within the substrate.
摘要:
A contact structure in a semiconductor device includes a layer of dielectric material and a via formed through the dielectric material. The contact structure further includes a spacer formed on sidewalls of the via using atomic layer deposition (ALD) and a metal deposited in the via.
摘要:
Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line openings containing a bit line dielectric between the memory cells. The memory cell contains a charge storage layer and a first poly gate. The bit line opening extends into the semiconductor substrate. By containing the bit line dielectric in the bit line openings that extend into the semiconductor substrate, the memory device can improve the electrical isolation between memory cells, thereby preventing and/or mitigating TPD.
摘要:
Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line openings containing a bit line dielectric between the memory cells. The memory cell contains a charge storage layer and a first poly gate. The bit line opening extends into the semiconductor substrate. By containing the bit line dielectric in the bit line openings that extend into the semiconductor substrate, the memory device can improve the electrical isolation between memory cells, thereby preventing and/or mitigating TPD.
摘要:
Methods of forming a memory cell containing two split sub-lithographic charge storage nodes on a semiconductor substrate are provided. The methods can involve forming two split sub-lithographic charge storage nodes by using spacer formation techniques. By removing exposed portions of a first poly layer while leaving portions of the first poly layer protected by the spacers, the method can provide two split sub-lithographic first poly gates. Further, by removing exposed portions of a charge storage layer while leaving portions of the charge storage layer protected by the two split sub-lithographic first poly gates, the method can provide two split, narrow portions of the charge storage layer, which subsequently form two split sub-lithographic charge storage nodes.
摘要:
Methods for fabricating dual bit memory devices are provided. In an exemplary embodiment of the invention, a method for fabricating a dual bit memory device comprises forming a charge trapping layer overlying a substrate and etching an isolation opening through the charge trapping layer. An oxide layer is formed overlying the charge trapping layer and within the isolation opening. A control gate is fabricated overlying the isolation opening and portions of the charge trapping layer adjacent to the isolation opening. The oxide layer and the charge trapping layer are etched using the control gate as an etch mask and impurity dopants are implanted into the substrate using the control gate as an implantation mask.
摘要:
Methods are provided for fabricating memory devices. A method comprises fabricating charge-trapping stacks overlying a silicon substrate and forming bit line regions in the substrate between the charge trapping stacks. Insulating elements are formed overlying the bit line regions between the stacks. The charge-trapping stacks are etched to form two complementary charge storage nodes and to expose portions of the silicon substrate. Silicon is grown on the exposed silicon substrate by selective epitaxial growth and is oxidized. A control gate layer is formed overlying the complementary charge storage nodes and the oxidized epitaxially-grown silicon.