摘要:
A probe arrangement with a probe for local electrophysiological analysis of cells (4) such as patch-clamp techniques for use with atomic force microscopy, has a probe with a cantilever arm (2) connected to a probe holder (3). The probe has a probe tip (4) at a probing end (5) of the cantilever arm (2) and a fluid channel (6) in the cantilever arm (2) connecting a probe tip aperture (7) with a fluid reservoir (8) via a duct (9). The fluid channel (6), the duct (9) and the fluid reservoir (8) are adapted to be filled with a fluid solution (10) enabling ion transport for electrophysiological analysis. A first electrode (15) for electrophysiological analysis is placed in the fluid reservoir (8) and/or in the duct (9) and/or in the fluid channel (6).
摘要:
The invention relates to a probe arrangement (10g) for exchanging in a controllable way liquids with micro-sized samples of material like biological cells, especially in connection with an scanning probe microscope, said probe arrangement (10g) comprising a probe holder (11) with at least one embedded first channel (18) and a cantilever (12) with at least one embedded second channel (15) and being provided to be attached to said probe holder (11) in a way that at least one aperture (19) of the first channel (18) is connected to at least one aperture (17) of the second channel (15) in a way that permits the liquid-tight transfer of a liquid between said first and second channels (15, 18). A safe and easy use of the probe arrangement is achieved by having the cantilever (12) permanently attached to said probe holder (11) to form a prefabricated probe unit (10g).
摘要:
The invention relates to a probe arrangement (10g) for exchanging in a controllable way liquids with micro-sized samples of material like biological cells, especially in connection with an scanning probe microscope, said probe arrangement (10g) comprising a probe holder (11) with at least one embedded first channel (18) and a cantilever (12) with at least one embedded second channel (15) and being provided to be attached to said probe holder (11) in a way that at least one aperture (19) of the first channel (18) is connected to at least one aperture (17) of the second channel (15) in a way that permits the liquid-tight transfer of a liquid between said first and second channels (15, 18). A safe and easy use of the probe arrangement is achieved by having the cantilever (12) permanently attached to said probe holder (11) to form a prefabricated probe unit (10g).
摘要:
A probe arrangement with a probe for local electrophysiological analysis of cells (4) such as patch-clamp techniques for use with atomic force microscopy, has a probe with a cantilever arm (2) connected to a probe holder (3). The probe has a probe tip (4) at a probing end (5) of the cantilever arm (2) and a fluid channel (6) in the cantilever arm (2) connecting a probe tip aperture (7) with a fluid reservoir (8) via a duct (9). The fluid channel (6), the duct (9) and the fluid reservoir (8) are adapted to be filled with a fluid solution (10) enabling ion transport for electrophysiological analysis. A first electrode (15) for electrophysiological analysis is placed in the fluid reservoir (8) and/or in the duct (9) and/or in the fluid channel (6).
摘要:
The invention relates to a method for spatially manipulating a microscopic object including providing a cantilever (12) having a tip with an opening (19) and a microchannel (15) extending through the cantilever (12) in its longitudinal direction. A suspension means is provided for holding the cantilever (12) and spatially moving the cantilever along a predetermined spatial path. A pressurizing means is provided for applying a predetermined pressure to the microchannel (15) and the cantilever (12) is moved with its tip to the microscopic object to be spatially manipulated. At least a part of the microscopic object is picked up with said cantilever (12) by reducing the pressure within the microchannel (15) relative to the pressure outside the tip of the cantilever (12). The microscopic object is then moved along a predetermined spatial path by means of the cantilever (12).
摘要:
A scanning probe microscopy (SPM) system includes a sample stage and one or more sample motion stages for actuating the sample stage, a SPM probe and one or more probe motion stages for actuating the SPM probe and for performing an SPM scan of a sample on the sample stage, and a system controller. The system controller includes an image acquisition module to collect from an image acquisition device one or more images of the sample carried by the sample stage, a touch-screen control module to display the one or more images of the sample together with one or more tools on a touch-screen and to generate one or more control actions depending on the detection of a gesture of a user touching the touchscreen, and a control module to receive one or more control actions generated by the touch-screen control module and to control the SPM system according to the received control actions.
摘要:
A medical device is disclosed, which comprises a functional unit (C) for permanent or temporary placement in the urogenital tract of a human or animal body. The functional unit has at least one electrically conducting portion. A power source (G) supplies a current to the electrically conducting portion after placement of the functional unit in the urogenital tract. In this manner, the growth of bacteria on the functional unit can be reduced.
摘要:
A medical device is disclosed, which comprises a functional unit (C) for permanent or temporary placement in the urogenital tract of a human or animal body. The functional unit has at least one electrically conducting portion. A power source (G) supplies a current to the electrically conducting portion after placement of the functional unit in the urogenital tract. In this manner, the growth of bacteria on the functional unit can be reduced.
摘要:
The invention relates to a method for spatially manipulating a microscopic object (20,23,33), said method comprising the steps of providing a cantilever (12) having a tip with an opening (19) and a microchannel (15) extending through the cantilever (12) in its longitudinal direction, said microchannel (15) being fluidly connected to the opening (19) at the tip of the cantilever; providing suspension means for holding the cantilever (12) and spatially moving the cantilever along a predetermined spatial path; providing pressurizing means for applying a predetermined pressure to the microchannel (15) within the cantilever; moving the cantilever (12) with its tip to the microscopic object (20,23,33) to be spatially manipulated, such that the opening (19) of the tip is adjacent to the microscopic object (20,23,33); picking up, with said cantilever (12), a part of the microscopic object (20,23,33) or the microscopic object (20,23,33) as a whole by reducing the pressure within the microchannel (15) relative to the pressure outside the tip of the cantilever (12); and moving said part of the microscopic object (20,23,33) or said microscopic object (20,23,33) as a whole along a predetermined spatial path by means of the cantilever (12).