摘要:
The present invention relates to a method for the production of ethene, CO, and hydrogen in a reactor with a circulating fluidized bed with two independent sections, from feedstocks that contain hydrocarbons with at least 11 carbon atoms or from feedstocks with a high oxygen content, using a catalyst in particulate form. The method teaches that in one of the sections of the reactor, in the absence of oxygen, a catalyst containing a dehydrogenation metal promotes the cracking of the said feedstocks, facilitating the subsequent endothermic reactions. In the other section, the coke is burned with air and the heating of the catalyst is controlled, for the adjustment of the appropriate amount of energy that the heated catalyst will convey to the section in which the endothermic reactions take place. The total ethene yield of the process according to the present invention is approximately 20% by weight in relation to the feedstock.
摘要:
The present invention relates to a method for the production of ethene, CO, and hydrogen in a reactor with a circulating fluidized bed with two independent sections, from feedstocks that contain hydrocarbons with at least 11 carbon atoms or from feedstocks with a high oxygen content, using a catalyst in particulate form. The method teaches that in one of the sections of the reactor, in the absence of oxygen, a catalyst containing a dehydrogenation metal promotes the cracking of the said feedstocks, facilitating the subsequent endothermic reactions. In the other section, the coke is burned with air and the heating of the catalyst is controlled, for the adjustment of the appropriate amount of energy that the heated catalyst will convey to the section in which the endothermic reactions take place. The total ethene yield of the process according to the present invention is approximately 20% by weight in relation to the feedstock.
摘要:
The present invention comprises a thermocatalytic cracking process for the production of diesel oil from a charge of vegetable origin made from seeds of oleaginous plants in refineries possessing at least two FCC reactors. At least -one of such reactors processes heavy gas oil or residue under conventional conditions whilst at least one of such reactors processes the charge of vegetable origin made from seeds of oleaginous plants under conditions suitable, for production of diesel oil. Said process employs the same catalyst utilised in the fluid catalytic cracking process which, simultaneously, processes a conventional charge.The diesel, or biodiesel, oil produced by means of said process is of superior quality having a cetane number exceeding 40 given that the cracking reactions occur at low temperatures and the products obtained are less oxidised and consequently purer than products obtained by means of existing technology.
摘要:
The present invention relates to a thermo catalytic process to produce diesel oil from vegetable oils, in refineries which have two or more Catalytic Cracking (FCC) reactors. At least one reactor processes heavy petroleum or residue in conventional operation conditions while at least one reactor processes vegetable oils in proper operation conditions to produce diesel oil. This process employs the same catalyst employed in the FCC process, which processes conventional feedstocks simultaneously. This process transforms high heat content raw materials into fuel hydrocarbons. It may improve efficiency for the obtainment of highly pure products and may not yield glycerin, one by-product of the transesterification process. The diesel oil produced by said process may have superior qualities and/or a cetane number higher than 40. Once cracking conditions occur at lower temperatures, it may form a less oxidized product, which is consequently purer than those obtained by existent technology.
摘要:
The present invention comprises a thermocatalytic cracking process for the production of diesel oil from a charge of vegetable origin made from seeds of oleaginous plants in refineries possessing at least two FCC reactors. At least one of such reactors processes heavy gas oil or residue under conventional conditions while at least one of such reactors processes the charge of vegetable origin made from seeds of oleaginous plants under conditions suitable, for production of diesel oil. Said process employs the same catalyst utilized in the fluid catalytic cracking process which, simultaneously, processes a conventional charge.The diesel, or biodiesel, oil produced by means of said process is of superior quality having a cetane number exceeding 40 given that the cracking reactions occur at low temperatures and the products obtained are less oxidized and consequently purer than products obtained by means of existing technology.
摘要:
The present invention comprises a thermo catalytic process to produce diesel oil from vegetal oils, in refineries which have two or more Catalytic Cracking (FCC) reactors. At least one reactor processes heavy gasoleum or residue in conventional operation conditions while at least one reactor processes vegetal oils in proper operation conditions to produce diesel oil. This process employs the same catalyst employed in the FCC process, which processes conventional feedstocks simultaneously. This process transforms high heat content raw materials into fuel hydrocarbons. It shows excellent efficiency for the obtention of highly pure products and do not yield glycerin, one by-product of the transesterification process. The diesel oil produced by said process presents quality superior and cetane number higher than 40. Once cracking reactions occur at lower temperatures, it forms less oxidized product, which is consequently purer than those obtained by existent technology are.
摘要:
A device and a method for operating it for application in a vertical tube reactor with downward flow (downer), has the aim of ensuring the intimate mixing of the solid particulate catalyst with a reagent fluid. Homogeneous distribution of catalyst is due to the use of a plate having perforations. Said perforated plate normally allows the passage of a portion of the stream of catalyst. The other portion overflows the edge of the plate, flowing in the form of an annular curtain, near the inner surface of the surrounding tube of the device. After passing beyond the perforated plate, the curtain-flow undergoes a deflection produced by an annular screen, to be mixed with the stream originating from the orifices in the perforated plate. A hydrocarbon charge is injected below the perforated plate, forming a certain angle with respect to the direction of the downward flow of catalyst, by means of inlets distributed uniformly about cross sections of the surrounding tube. After the mixing region, the diameter of the device, when smaller than the diameter of the associated tube reactor, expands slightly.
摘要:
A device and a method for operating it for application in a vertical tube reactor with downward flow (downer), has the aim of ensuring the intimate mixing of the solid particulate catalyst with a reagent fluid. Homogeneous distribution of catalyst is due to the use of a plate having perforations. Said perforated plate normally allows the passage of a portion of the stream of catalyst. The other portion overflows the edge of the plate, flowing in the form of an annular curtain, near the inner surface of the surrounding tube of the device. After passing beyond the perforated plate, the curtain-flow undergoes a deflection produced by an annular screen, to be mixed with the stream originating from the orifices in the perforated plate. A hydrocarbon charge is injected below the perforated plate, forming a certain angle with respect to the direction of the downward flow of catalyst, by means of inlets distributed uniformly about cross sections of the surrounding tube. After the mixing region, the diameter of the device, when smaller than the diameter of the associated tube reactor, expands slightly.
摘要:
An apparatus for downflow fluid catalytic cracking is described, which comprises a regenerated catalyst riser carrying regenerated catalyst and a carrying fluid, those being directed through a crossover section to a distributor that will centrifuge gas and separate catalyst from carrying fluid, the catalyst being directed to a downflow reactor through a distributing basket provided with perforations. The upper part of the reactor is provided with feed injectors, which atomize the feed so that feed vaporization and feed and catalyst admixture is optimized. After the cracking reaction in downflow reactor, reaction products are separated and spent catalyst is directed to stripping and regeneration sections. The FCC process carried out in the apparatus is also described.