摘要:
A memory circuit includes a first plurality of memory arrays disposed in a column fashion. The memory circuit includes a first plurality of keepers each of which is electrically coupled with a corresponding one of the first plurality of memory arrays. A first current limiter is electrically coupled with and shared by the first plurality of keepers. A first plurality of sector switches each are electrically coupled between the first current limiter and a respective one of the first plurality of keepers.
摘要:
A time delay is determined to cover a timing of a memory cell in a memory macro having a tracking circuit. Based on the time delay, a capacitance corresponding to the time delay is determined. A capacitor having the determined capacitance is utilized. The capacitor is coupled to a first data line of a tracking cell of the tracking circuit. A first transition of the first data line causes a first transition of a second data line of the memory cell.
摘要:
The layouts, device structures, and methods described above utilize dummy devices to extend the diffusion regions of edge structures and/or non-allowed structures to the dummy device. Such extension of diffusion regions resolves or reduces LOD and edge effect issues. In addition, treating the gate structure of a dummy device next to an edge device also allows only one dummy structure to be added next to the dummy device and saves the real estate on the semiconductor chip. The dummy devices are deactivated and their performance is not important. Therefore, utilizing dummy devices to extend the diffusion regions of edge structures and/or non-allowed structures according to design rules allows the resolution or reduction or LOD and edge effect issues without the penalty of yield reduction or increase in layout areas.
摘要:
A circuit includes a first node; a second node; a first PMOS transistor having a source coupled to the first node, a drain coupled to a first control transistor, and a gate driven by a first voltage; and a first NMOS transistor having a source coupled to the second node, a drain coupled to the first control transistor, and a gate driven by a second voltage. The first PMOS transistor is configured to automatically turn off based on the first voltage and a first node voltage at the first node. The first NMOS transistor is configured to automatically turn off based on the second voltage and a second node voltage at the second node. When the first PMOS transistor, the control transistor, and the first NMOS transistor are on, the first node voltage is lowered while the second voltage is raised.
摘要:
A circuit includes a first node; a second node; a first PMOS transistor having a source coupled to the first node, a drain coupled to a first control transistor, and a gate driven by a first voltage; and a first NMOS transistor having a source coupled to the second node, a drain coupled to the first control transistor, and a gate driven by a second voltage. The first PMOS transistor is configured to automatically turn off based on the first voltage and a first node voltage at the first node. The first NMOS transistor is configured to automatically turn off based on the second voltage and a second node voltage at the second node. When the first PMOS transistor, the control transistor, and the first NMOS transistor are on, the first node voltage is lowered while the second voltage is raised.
摘要:
A memory comprising: a plurality of memory cells arranged in a plurality of rows and a plurality of columns. A column of the plurality of columns including a first power supply node configured to provide a first voltage, a second power supply node configured to provide a second voltage, a plurality of internal supply nodes electrically coupled together and configured to receive the first voltage or the second voltage for a plurality of memory cells in the column and a plurality of internal ground nodes. The internal ground nodes electrically coupled together and configured to provide at least two current paths for the plurality of memory cells in the column.
摘要:
A layout structure includes a substrate, a well, a first dopant area, a second dopant area, a first poly region, a third dopant area, a fourth dopant area, and a second poly region. The well is in the substrate. The first poly region is in between the first dopant area and the second dopant area. The second poly region is in between the third dopant area and the fourth dopant area. The first dopant area, the second dopant area, the third dopant area, and the fourth dopant area are in the well. The first dopant area is configured to serve as a source of a transistor and to receive a first voltage value from a first power supply source. The well is configured to serve as a bulk of the transistor and to receive a second voltage value from a second power supply source.
摘要:
A circuit includes a first node, a second node, a first current mirror circuit, and a second current minor circuit. The first current mirror circuit has a reference end and a mirrored end. The reference end of the first current minor circuit is coupled to the first node, and the mirrored end of the first current minor circuit is coupled to the second node. The second current minor circuit has a reference end and a mirrored end. The reference end of the second current minor circuit is coupled to the second node, and the mirrored end of the second current minor circuit is coupled to the first node.
摘要:
A semiconductor structure includes a first strap cell, a first read port, and a first VSS terminal. The first strap cell has a first strap cell VSS region. The first read port has a first read port VSS region, a first read port read bit line region, and a first read port poly region. The first VSS terminal is configured to electrically couple the first strap cell VSS region and the first read port VSS region.
摘要:
A clock generator includes a first input end and a second input end. The first input end is capable of receiving a first clock signal including a first state transition and a second state transition defining a first pulse width. The second input end is capable of receiving a second clock signal having a third state transition. A time period ranges from the first state transition to the third state transition. The clock generator can compare the first pulse width and the time period. The clock generator can output a third clock signal having a second pulse width ranging from a fourth state transition to a fifth state transition. The fifth state transition of the third clock signal is capable of being triggered by the second state transition of the first clock signal or the third state transition of the second clock signal depending on the comparison of the first pulse width and the time period.